
V350EPC, V360EPC
Local Bus to PCI Bridge

User’s Manual
Revision 1.05

©V3 Semiconductor

V3 Semiconductor makes no warranties for the use of its products. V3 does not assume any liability for errors which may appear in this document,
however, we will attempt to notify customers of such errors.

V3 Semiconductor retains the right to make changes to either the documentation, specification or component without notice.
Please verify with V3 Semiconductor to be sure you have the latest specifications before finalizing a design.

©V3 Semiconductor 1997-1998

The Embedded Chipset Company is a t rademark of V3 Semiconductor.
A l l o ther t rademarks are the proper ty of thei r respect ive owners.

Contents

Chapter 1 Introduction 1

1.1 How to Use this Manual... 3

1.2 Getting Help from V3 Semiconductor .. 3

1.3 Getting Answers to PCI Related Questions... 4

1.4 Getting Information About the i960/Am29K Family ... 4

1.5 Disclaimer.. 5

1.6 Revision History... 5

Chapter 2 Bridge Operation Overview 7

2.1 Operational Example ... 8

2.1.1 Direct Local Bus Write to PCI Space.. 9

2.1.2 Direct Local Bus Read from PCI Space ... 9

2.1.3 PCI Write to Local Space ... 10

2.1.4 PCI Reads from Local Space ... 10

2.1.5 DMA Transfers ... 11

2.1.6 Mailbox Registers and Doorbell Interrupts ... 11

Chapter 3 Internal Register Apertures 13

3.1 Local Bus Access to Internal Registers ... 14

3.2 PCI Bus Access to Internal Registers.. 14

Chapter 4 Data Transfer Apertures 17

4.1 PCI-to-Local Bus Apertures... 17

4.1.1 Setting the PCI-to-Local Aperture Base Address and Size .. 18

4.1.2 Selecting PCI Memory or I/O Space Mapping.. 21

4.1.3 PCI-to-Local Address Translation... 21

4.1.4 Byte Order Conversion ... 21

4.1.5 Enabling Read Prefetching... 22

4.1.6 Disabling PCI-to-Local Bus Apertures .. 22

4.1.7 Overlapping Apertures.. 22

4.1.8 Special Function Modes for PCI-to-Local Bus Apertures ... 23

4.2 Local-to-PCI Bus Apertures... 23

4.2.1 Setting the PCI Command Type... 23

4.2.2 Setting the Local-to-PCI Aperture Base Address and Size .. 25

4.2.3 Local-to-PCI Address Translation... 25

4.2.4 Byte Order Conversion ... 25
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 iii

4.2.5 Enabling Read Prefetching... 25

4.2.6 Enabling Local-to-PCI Bus Apertures... 25

Chapter 5 FIFO Architecture and Operation 27

5.1 Dynamic Bandwidth Allocation FIFO Architecture... 27

5.2 Write FIFO Operation and Programming... 28

5.2.1 Write FIFO Draining Strategies .. 29

5.3 Read FIFO Operation and Programming .. 31

5.3.1 Prefetching and Read FIFO Filling Strategies .. 31

5.4 FIFO Prioritization Options .. 33

5.5 FIFO Data Coherency Options .. 33

5.5.1 Ensuring Strict Data Coherency ... 34

5.5.2 Monitoring the Status of Read and Write FIFOs... 34

5.5.3 Ensuring the Completion of a Posted Write.. 35

5.6 FIFO Latency... 35

Chapter 6 DMA Controller 37

6.1 DMA Transfers .. 37

6.1.1 Local Bus to PCI Bus DMA Transfers .. 37

6.1.2 PCI Bus to Local Bus DMA Transfers .. 38

6.1.3 DMA Block Chaining... 38

6.1.4 DMA Transfer Size ... 40

6.1.5 Relationship to the Data Transfer Apertures .. 40

6.1.6 Automatic DMA Throttling... 40

6.1.7 DMA Interrupts ... 40

6.2 Programming the DMA Controller ... 41

6.2.1 Setting the Starting Addresses ... 41

6.2.2 Setting the Transfer Count ... 42

6.2.3 Setting the Transfer Direction... 42

6.2.4 Byte Order Conversion ... 42

6.2.5 Using DMA Block Chaining .. 43

6.2.6 Starting DMA Operation ... 43

6.2.7 Early Termination of a DMA Process ... 43

6.2.8 Setting Priority Between the DMA Channels .. 43

Chapter 7 PCI Bus Interface 45

7.1 Target Transfers .. 45

7.1.1 Target Reads.. 45

7.1.2 Target Writes .. 46

7.1.3 PCI Exceptions During EPC Target Cycles.. 47
iv EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

7.1.3.1 Recoverable Exception: Target Disconnect ... 47

7.1.3.2 Recoverable Exception: Target Retry .. 47

7.1.4 PCI Access of EPC Internal Registers ... 47

7.2 Initiator Transfers... 48

7.2.1 Initiator Reads .. 48

7.2.2 Initiator Writes... 49

7.2.3 PCI Exceptions During EPC Initiated Cycles.. 58

7.2.3.1 Fatal Exception: Master Abort (Reads) .. 58

7.2.3.2 Fatal Exception: Master Abort (Writes) .. 58

7.2.3.3 Fatal Exception: Target Abort (Reads)... 58

7.2.3.4 Fatal Exception: Target Abort (Writes) ... 59

7.2.3.5 Recoverable Exception: Target Disconnect ... 59

7.2.3.6 Recoverable Exception: Target Retry .. 59

7.2.4 Initiator Pre-Emption... 59

Chapter 8 Local Bus Interface 61

8.1 Target Mode .. 61

8.1.1 Local Bus CPU Configuration... 61

8.1.2 Local Reads and Writes to Internal Registers .. 61

8.1.3 Local Read from Local-to-PCI Apertures.. 64

8.1.4 Local Write to Local-to-PCI Apertures .. 64

8.1.5 Target Mode PCI Error Signalling... 73

8.1.6 Deadlock Conditions and Resolution.. 73

8.2 Master Mode.. 74

8.2.1 Requesting the Local Bus... 74

8.2.2 i960 Local Bus Reads and Writes .. 74

8.2.3 Am29K Local Bus Reads and Writes .. 74

8.2.3.1 Strict Compatibility Mode.. 75

8.2.3.2 High-Performance Mode .. 75

8.3 Burst Support... 76

8.4 BTERM Operation (V961EPC and V962EPC Only).. 77

8.4.1 BTERM as an Input .. 77

8.4.2 Deadlock Avoidance using the BTERM as an Output .. 78

8.5 Local Bus Parity... 79

8.5.1 Relationship between Local Parity and PCI Parity ... 79

8.5.2 Local Bus Parity Generation... 80

8.5.3 Local Bus Parity Checking.. 80

Chapter 9 PCI Configuration 83

9.1 Configuration as a System Host Bridge... 83

9.1.1 EPC Host Configuration Mechanism .. 83
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 v

9.1.2 Controlling Target IDSEL Lines .. 83

9.1.3 Generating Configuration Reads and Writes.. 84

9.1.4 Using Configuration Information ... 84

9.1.5 Determining the Presence of Target Devices During Configuration............................. 85

9.2 Configuration as a Target Bridge... 85

9.2.1 EPC Base Register Response to Configuration Inquiries .. 85

9.2.2 EPC Expansion ROM Base Register Response to Configuration Inquiries 87

Chapter 10 PC Compatibility 89

10.1 Real Mode DOS Compatibility Aperture .. 89

10.2 Example: VGA Peripheral.. 91

Chapter 11 Mailbox Registers 93

11.1 Overview.. 93

11.1.1 Accessing the Mailbox Registers.. 93

11.1.2 Doorbell Interrupts .. 94

11.2 Programming the Mailbox Registers ... 95

11.2.1 Enabling Doorbell Interrupt Requests... 95

11.2.2 Clearing Doorbell Interrupt Requests ... 95

Chapter 12 Interrupt Control 97

12.1 Local Interrupt Control Unit.. 97

12.1.1 Overview... 97

12.1.2 Local Interrupt Requests .. 98

12.1.3 Masking Local Interrupt Requests .. 98

12.1.4 Local Interrupt Event Signal ... 98

12.2 PCI Interrupt Control Unit (PICU) .. 99

12.2.1 Overview... 99

12.2.2 PCI Interrupt Pins (INTA through INTD) ... 100

12.2.2.1 Configuring a PCI Interrupt Pin as an Interrupt Request Output 100

12.2.2.2 Configuring a PCI Interrupt Pin as an Interrupt Request Input 100

12.2.2.3 Crosspoint Interrupt Routing Mechanism ... 100

12.2.3 Internal PCI Interrupt Requests .. 101

12.2.3.1 Mailbox and DMA PCI Interrupt Requests ... 101

12.2.3.2 Local Direct Interrupt Request.. 102

12.2.3.3 Routing the Internal PCI Interrupt Requests to an INTx Pin....................... 102

12.2.4 PICU Configuration Example.. 102

12.3 Generating PCI Interrupt Acknowledge Cycles ... 103
vi EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 13 Initialization 105

13.1 Reset Direction .. 105

13.2 Initializing the Internal Registers.. 108

13.2.1 Initialization Using the Local Processor.. 108

13.2.1.1 i960 Processor Configuration Note .. 110

13.2.2 Initialization Using the PCI Configuration Space .. 110

13.2.3 Initialization Using the Serial EEPROM interface ... 111

13.2.3.1 Programming the Serial EEPROM ... 111

13.2.3.2 Timing Considerations when Initializing via the Serial EEPROM............... 112

13.2.4 Re-Initialization Using the PCI I/O or Memory Space... 113

Chapter 14 Register Descriptions 115

14.1 Register Map ... 115

Glossary 143

Index 145
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 vii

viii EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 1 Introduction

In a very short period of time the PCI bus standard has moved beyond the PC to become the
most widely accepted high-performance bus standard for embedded applications. As a
leader in providing chipset solutions for high-end embedded applications, V3 Semiconductor
has developed the EPC family of PCI Bridge Components for the Intel i960® and the AMD
Am29KTM processor family. The EPC is specifically designed to take advantage of the key
features of the i960/Am29K family of processors to deliver the highest performance possible
for embedded PCI systems.

The EPC is the new enhanced version of the previous generation of PCI Bridges known as
the PBC. The V350EPC is backward compatible (register and pin) with the V960PBC and
the V961PBC devices. The V360EPC is backward compatible (register and pin) with the
V962PBC and the V292PBC. A block diagram of the EPC is shown in Figure 1.

Some of the key features of the EPC are:

• Glueless interface to i960/Am29K processors

• Compliant with PCI 2.1 specification

• PICMG CompactPCI Hot Swap Capable

• Configurable for system host, bus master, and target operation

• Burst access support on both local and PCI interfaces

• PCI-to-Local and Local-to-PCI address space remapping

• 2 PCI-to-Local and 2 Local-to-PCI data transfer apertures

• 640 bytes of programmable FIFO storage with DYNAMIC BANDWIDTH
ALLOCATION™

• On-the-fly byte order (endian) conversion

• 2 channel DMA controller with DMA Chaining

• Bi-directional mailbox registers with doorbell interrupts

• Power on configuration via serial EEPROM

• Direct connect to VxBMC/CMC or V96SSC memory controllers
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 1

Introduction
Figure 1: EPC BLOCK DIAGRAM

Lo
ca

l
To

 P
C

I
W

rit
e

F
IF

O

(2
56

 b
yt

es
)

P
C

I R
ea

d
fr

om
Lo

ca
l B

us
A

pe
rt

ur
e

0

(8
 w

or
ds

)

P
C

I R
ea

d
fr

om
Lo

ca
l B

us
A

pe
rt

ur
e

1

(8
 w

or
ds

)

Lo
ca

l R
ea

d
 F

ro
m

P
C

I B
U

S
A

pe
rt

ur
e

0

 (
8

w
or

ds
)

P
C

I
to

 L
oc

al
W

rit
e

F
IF

O
(2

56
 b

yt
es

)

Lo
ca

l R
ea

d
 F

ro
m

P
C

I B
us

A
pe

rt
ur

e
1

(8
 w

or
ds

)

LO
C

A
L

B
U

S

C
O

N
T

R
O

L
LO

G
IC

LO
C

A
L

A
D

D
R

E
S

S

D
M

A
 0

 A
D

D
R

E
S

S

D
M

A
 1

 A
D

D
R

E
S

S

LO
C

A
L

R
E

A
D

 A
D

D
R

E
S

S

P
C

I
 A

D
D

R
E

S
S

G
E

N
E

R
AT

O
R

P
C

I R
E

A
D

 A
D

D
R

E
S

S

D
M

A
 0

 A
D

D
R

E
S

S

D
M

A
 1

 A
D

D
R

E
S

S

P
C

I B
U

S

C
O

N
T

R
O

L
LO

G
IC

M
ai

lb
ox

R
eg

is
te

rs

C
on

tr
ol

 a
nd

C
on

fig
ur

at
io

n

R
eg

is
te

rs
S

E
R

IA
L

E
E

P
R

O
M

C
LO

C
K

 B
O

U
N

D
A

R
Y

P
C

I B
U

S
 C

LO
C

K

LO
C

A
L

B
U

S

LO
C

A
L

B
U

S
C

LO
C

K

LO
C

A
L

B
U

S
 C

LO
C

K

P
C

I B
U

S
 C

LO
C

K

P
C

I B
U

S
 C

LO
C

K

P
C

I-
T

O
-L

O
C

A
L

F
IF

O
s

LO
C

A
L-

T
O

-P
C

I F
IF

O
s

2 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Introduction
 How to Use this Manual
1.1 HOW TO USE THIS MANUAL

The EPC User’s Manual includes detailed information regarding the programming and
design of systems based on the EPC. However there are other complementary documents
to assist designers. A complete set of documentation includes the following:

The electrical specifications are found in the V350EPC, V360EPC Data Sheets. Before
finalizing a system design based on the EPC, please contact V3 Semiconductor to verify
that you have the most recent specifications. Other application notes and useful design aids
can be found on the V3 Web site.

V3 is constantly trying to improve the quality of its product documentation. If you have any
questions or comments, please contact V3 Customer Assistance.

1.2 GETTING HELP FROM V3 SEMICONDUCTOR

If you need assistance with a technical question, please contact V3 through our AppsFax or
Email hotlines. Email is the quickest and most efficient way to get technical support from V3.

If you do not have access to Email or a fax machine, feel free to call us from 9AM to 5PM
Pacific Standard Time.

V3 AppsFax: (408) 988-2601 (Santa Clara, California)

V3 Customer Assistance: (800) 488-8410 (US and Canada)

(408) 988-1050 (Outside North America)

v3help@vcubed.com

V350EPC

• EPC User’s Manual (this
document)

• V350EPC Data Sheet

• Reference design manual
(Quatro, Avalanche)

V360EPC

• EPC User’s Manual (this
document)

• V360EPC Data Sheet

• Reference design manual
(Quatro, Avalanche)
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 3

Introduction

Getting Answers to PCI Related Questions
Some technical support information is also posted on the V3 Web site. This is the source of
the most up-to-date data sheets and user’s manuals and is located at:

www.vcubed.com

1.3 GETTING ANSWERS TO PCI RELATED QUESTIONS

This manual assumes a basic understanding of the PCI bus specification. If you are looking
for a copy of the specification please contact the PCI special interest group at 800.433.5177.

If you are not intimately familiar with the PCI specification, a good place to start is by reading
one of several books on the subject. One of the most popular is “PCI System Architecture”
written by Tom Shanley and Don Anderson (published by MindShare Inc.).

1.4 GETTING INFORMATION ABOUT THE i960/Am29K
FAMILY

This manual assumes that you are familiar with the i960/Am29K processors for which the
EPC was designed. For information about products, you may call Intel / Advanced Micro
Devices at the numbers listed below.

Intel: (800) 879-4683 (US and Canada)

(408) 987-8080 (Outside North America)

 www.intel.com (Web site)

AMD: (800) 222-9323 (US and Canada)

(408) 749-5703 (Outside North America)

www.amd.com (Web site)

1.5 DISCLAIMER

V3 Semiconductor makes no warranties for the use of its products. V3 does not assume any
liability for errors which may appear in this document, however, we will attempt to notify
customers of such errors. V3 Semiconductor retains the right to make changes to either the
4 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Introduction
 Revision History
documentation, specification or component without notice.

Please verify with V3 Semiconductor to be sure you have the latest specifications before
finalizing your design.

1.6 REVISION HISTORY

Table 1: Revision History

Revision Number Date Comments

0.2 2/98 First release without NDA.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 5

Introduction

Revision History
6 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 2 Brid ge Operation Overview

The EPC supports four modes of PCI operation:

• System Master - The i960/Am29K processor is the PCI system master and PCI
broadcasts configuration commands to attached PCI subsystems. This mode would
be used, for example, in embedded systems using PCI as the system mezzanine
bus.

• Bus Master - The i960/Am29K processor is part of a PCI subsystem that receives
configuration commands from a primary system master, yet will act as a bus master
during PCI transactions. This mode would be used, for example, for intelligent PCI
add-in cards based on the i960/Am29K processor.

• Target - The i960/Am29K processor is part of a PCI subsystem that receives
configuration commands from a host CPU and does not act as a PCI bus master.

• Stand Alone Target - The EPC can be used as a stand alone bridge component
without an attached processor. For example, the EPC can be used with the VxBMC/
CMC or V96SSC Burst DRAM Controller to build a two-chip PCI-to-DRAM interface.

Figure 2 shows example designs covering each of the four modes of operation.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 7

Bridge Operation Overview

Operational Example
Figure 2: Example EPC System Designs

2.1 OPERATIONAL EXAMPLE

The easiest way to understand the operation of the EPC is to cover several simple
operational examples. In this section we will briefly describe: PCI-to-Local transfers, Local-
to-PCI transfers, DMA operation, and mailbox register usage. Initialization and configuration
is deferred to later chapters.

After initialization the EPC monitors both the local and PCI buses simultaneously, waiting for
access within pre-programmed regions of local memory or PCI space. Two independent
programmable apertures are provided for local memory to PCI bus transfers; two more

CPU

EPC

PCI BUS

ADD-IN CARDS

SYSTEM MASTER APPLICATION

CPU

EPC

SCSI
CONTROLLER

HARD
DISK

PCI EDGE CONNECTOR

PCI ADD-IN CARD

INTELLIGENT BUS MASTER APPLICATION

CPU

EPC

FRAME

PCI EDGE CONNECTOR

PCI ADD-IN CARD

BUFFER AND
RAMDAC TO

MONITOR

CACHING SCSI

VIDEO DECODE

INTELLIGENT TARGET ONLY APPLICATION

CARD IS NEVER
A BUS MASTER
AND RECEIVES
VIDEO DATA FROM
OTHER MASTERS

CARD ACTS AS
A BUS MASTER
AND RECEIVES
AND TRANSMITS
DATA ON THE PCI
BUS

EPC

V3 Semi.

VxxBMC
DRAM

CONTROLLER
DRAM
ARRAY

PCI DRAM CONTROLLER

PCI TARGET

TARGET ONLY APPLICATION
8 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Bridge Operation Overview
 Operational Example
apertures are provided for PCI to local memory transfers. The apertures can also perform
address translation and byte-order conversion on accesses flowing across the bridge.

For our operational example, let’s assume the following:

• The base address for PCI-to-Local aperture 0 is set at 1000.0000H with a size of 1
megabyte

• The base address for Local-to-PCI aperture 0 is set at E000.0000H with a size of 4
megabytes

• PCI-to-Local aperture 1 is disabled

• Local-to-PCI aperture 1 is disabled

• No errors occur during the transfers

2.1.1 Direct Local Bus Write to PCI Space

When the local bus master needs to perform a write to a device on the PCI bus, it simply
writes data to a local memory location within a Local-to-PCI aperture. In this example, all
local bus writes with an address within the range E000.0000H to E03F.FFFFH (base at
E000.0000H with 4 megabyte window), will be "captured" and converted to PCI bus
transfers. To the local bus master it appears that the write has completed. However, the
address and data for the write have been placed into the Local-to-PCI bus write FIFO for
completion when the PCI bus becomes available.

Both the address and data for the transfer can be changed as they flow across the bridge. If
address translation is selected, the target address for the write can be changed from the
local bus address to a different address in PCI space. For example, the bridge can be
programmed to convert a write to location E000.0020H in local space, into a write to location
A000.0020H in PCI space. In addition, the data for the write may optionally be converted
from big endian to little endian byte order or vice-versa. Byte order conversion is useful in
systems where the local processing uses one byte order and the main CPU uses another
byte order. A good example is a networking PC add-in card that processes data in big-
endian order, but has to share that data with an x86 processor host, which expects little
endian byte order.

Once the "captured" write access reaches the PCI side of the FIFO, the EPC requests
ownership of the PCI bus (how long the EPC waits before requesting the bus is
programmable). When the central PCI arbiter grants the EPC the bus, the EPC then bursts
the data queued in the write FIFO to the target PCI address. The EPC relinquishes
ownership of the PCI bus once the write transfer is completed.

2.1.2 Direct Local Bus Read from PCI Space

A local bus read from PCI space progresses similarly to the write example above. When the
local bus reads from a location in the Local-to-PCI aperture (in this case E000.0000H to
E03F.FFFFH), these reads are converted into read transfers on the PCI bus. Unlike the write
case, however, the local master cannot complete its read operation until the data is
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 9

Bridge Operation Overview

Operational Example
delivered from PCI space.

For example, let’s look at the case where the local master wants to read from a register on
an add-in card located at A000.0010H in PCI space. Let’s assume the EPC is programmed
to translate accesses to Local-to-PCI aperture 0 from E00n.nnnn in local memory to
A00n.nnnnH in PCI space. To read from A000.0010H, the local master initiates a read to
E000.0010H. The EPC sees this read, recognizes it as being within Local-to-PCI aperture 0
and "captures" it for bridging to the PCI bus. Since the data is not immediately available to
return to the host, the bridge returns a NOT READY indication to the local processor.
Simultaneously, the EPC requests the PCI bus. Once granted the bus, the EPC begins to
read from the translated address (A000.0010H) and transfers that data back across the
bridge to the local processor. As each datum becomes available on the local side, READY is
returned to complete the local bus request. Just as in the write transfer case, the EPC can
be programmed to perform byte order conversion as the data flows through the bridge. In
order to improve system bandwidth, the EPC can be programmed to prefetch data from the
PCI bus. The prefetched data will be ‘cached’ in the bridge until the next access.

2.1.3 PCI Write to Local Space

PCI bus masters gain access to the local memory space through the PCI-to-Local bus
apertures. In our example, the PCI-to-Local aperture has been programmed to respond to
PCI accesses within the 1000.0000H to 100F.FFFFH range (a 1 megabyte window). For a
PCI master to write into the EPC’s local memory, it simply writes to a PCI location falling
within a PCI-to-Local aperture window.

For example, let’s assume the PCI master wants to write to location 2000.0030H in the
EPC’s local memory space. Since the bridge is programmed to respond to accesses in the
1000.0000H to 100F.FFFFH range we will need to re-map the address so that the proper
translation occurs. The PCI master now writes data to PCI location 1000.0030H, that access
is captured by the bridge and buffered within the PCI-to-Local write FIFO. The PCI master
completes the write and relinquishes the bus. Simultaneously, the address of the access is
translated within the bridge, and the EPC requests access to the local bus (the protocol
used to gain local bus mastership is processor version dependent). Once granted the local
bus, the EPC will write the captured data in the new location in local memory space
(2000.0030H). Data byte order translation is also available in the PCI-to-Local direction.

2.1.4 PCI Reads from Local Space

As you might expect, PCI reads from local space closely mirror local reads from PCI space.
Let’s assume the same conditions as the previous example, except in this case the PCI
master wants to read from location 2000.0030H in local memory space. In this case, the PCI
master reads from location 1000.0030H in PCI space (remember address translation will do
this automatically once configured). The bridge immediately responds by deasserting "target
ready" (TRDY) to inform the PCI master that it will need to wait for the data to be fetched
from the local side. Simultaneously, the EPC requests the local bus. Once granted the local
bus, the EPC will read from location 2000.0030H and forward that data across the bridge to
the PCI side. When the data is valid on the PCI side, TRDY will be asserted to signal
completion of the read. As with the Local-to-PCI transfer, the EPC can prefetch data and
cache it.
10 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Bridge Operation Overview
 Operational Example
2.1.5 DMA Transfers

All four of the above examples assumed that the local processor, or a PCI master, was
involved in the data transfer across the bridge. Often, higher overall system performance
can be achieved by allowing simple transfers to be handled by a less-intelligent agent, such
as a DMA controller. The EPC provides 2 DMA controllers, each capable of transferring data
across the bridge without processor intervention.

Let’s take the example of a caching disk controller PCI add-in card. The local processor is
responsible for retrieving data from the hard drive and building buffers in local memory.

When the system host processor, a PowerPC processor for example, requests a specific
buffer be moved into system memory, the local processor programs the bridge with the start
address and transfer count for the data buffer, and the target address in PCI space for the
data. The DMA controller then transfers this data autonomously, allowing both the local
processor and the system processor to go about their business. The DMA controller can
also be programmed to transfer a chain of buffers. This is useful when, in the above
example, several 512 byte sectors must be assembled into a 16K byte logical block in the
host’s memory.

2.1.6 Mailbox Registers and Doorbell Interrupts

Often it is not practical for the EPC to request access to the local or PCI bus to transfer small
amounts of information. Let’s use the caching disk card as an example again. Perhaps the
PowerPC system master wants to know if the disk access has been completed (i.e. the data
has been moved from the local memory buffer into system memory). One way to do this
would be to set up a semaphore in local memory that the local processor sets whenever a
transfer was completed. To read the semaphore, the PowerPC system master would need
to perform a cross-bridge read of local memory space, a potentially time consuming transfer
to retrieve 1 bit of information.

A higher performance method to transfer small amounts of information is provided by the
mailbox registers. These registers reside within the EPC and may be read or written from
either side of the bridge. Each register is eight bits and the bit definition is application
dependent. Using our caching disk controller example, one bit may be used to indicate
"transfer complete". The local processor sets this bit by writing to a specific location within
the EPC’s configuration space (independent of the transfer apertures). The system master
processor would then read this register directly from the EPC; no local bus access is
required.

In addition to transferring data, the mailbox registers can be used to generate interrupts on
either side of the bridge. For example, you may use one register to indicate transfer data
NOW, in which case you would want to immediately interrupt the local processor.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 11

Bridge Operation Overview

Operational Example
12 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 3 Internal Re gister Apertures

The EPC does not use traditional chip-selects to access either its configuration registers or
bridging functions. The chip-select function is replaced by address apertures, which
compare addresses on both the PCI and Local bus. If an access is seen within one of these
programmable apertures, then an internal chip-select is generated by the EPC.

There are a total of nine apertures implemented in the EPC:

• Four data transfer apertures that are used in the movement of data across the
bridge. There are two apertures for data movement from PCI-to-Local and two for
Local-to-PCI transfers. The data transfer apertures are described in detail in the next
section.

• One PCI EPROM data transfer aperture is provided to allow location of a host
system boot ROM on an adapter card. The boot ROM aperture can only transfer
data from the local bus to PCI. Boot ROM support is discussed in the “PCI
Configuration” chapter.

• One DOS Compatibility data transfer aperture is provided to allow real-mode DOS
access to EPC local memory from the lower 1 megabyte of memory space and from
DOS I/O holes. DOS memory and I/O support is discussed in the “PC Compatibility”
chapter.

• One aperture is provided for access to the EPC’s internal registers from the Local
bus.

• One aperture is provided for access to the EPC’s internal registers from the PCI bus
(memory or IO cycles).

• One aperture is provided for access to the EPC’s internal registers from the PCI bus
(PCI configuration cycles).

The function of the apertures is summarized in Figure 3.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 13

Internal Register Apertures

Local Bus Access to Internal Registers
3.1 LOCAL BUS ACCESS TO INTERNAL REGISTERS

Local bus access to internal registers is controlled by the Local-to-Internal Register aperture.
The base address for this register is set in the LB_IO_BASE register. The LB_IO_BASE
register is initialized by special bus cycles on the local bus immediately following a reset
(see “Initialization”) or by serial EEPROM.

The LB_IO_BASE aperture has a fixed size of 64 kilobytes, although only a small part of this
is actually used.

To write to a specific register through the LB_IO_BASE aperture, add the offset of the target
register to the starting address of the Local-to-Internal Register aperture and use that
address for the write. For example, if the LB_IO_BASE register is programmed to place the
Local-to-Internal Register aperture at E123.0000H and you want to write to the PCI
Command Register (offset 4H), then the target address would be E123.0004H.

3.2 PCI BUS ACCESS TO INTERNAL REGISTERS

PCI bus access to internal registers is controlled by the PCI-to-Internal Register aperture.
The base address for this register is set in the PCI_IO_BASE register. The PCI_IO_BASE
register is initialized either by the serial EEPROM, PCI configuration cycles, or local bus
register accesses (see “Initialization”). The PCI_IO_BASE aperture has a fixed size of 256
bytes and may be located in either PCI memory or IO space.

The EPC’s internal registers can also be accessed by standard PCI configuration cycles.
Configuration cycles are initiated by a PCI system master by driving active the EPC’s IDSEL
pin, and then performing configuration reads and writes. For configuration reads/writes, only
the low 8 bits of the address are used to index the internal registers. AD[31:8] are ignored
during the address phase.
14 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Internal Register Apertures
 PCI Bus Access to Internal Registers
Figure 3: Summary of Aperture Function

INTERNAL REGISTERS

BRIDGING FIFOs

LOCAL
M E M O R Y

SPACE

L-TO-P
APERTURE

0

L-TO-P
APERTURE

1

LOCAL
-TO-

INTERNAL
R E G

APERTURE

LB_BASE0
LB_MAP0

LB_BASE1
LB_MAP1

LB_ IO_BASE

PCI SPACE

P-TO-L
APERTURE

0

P-TO-L
APERTURE

1

PCI
-TO-

INTERNAL
R E G

APERTURE

PCI_BASE0
PCI_MAP0

PCI_BASE1
PCI_MAP1

PCI_ IO_BASE

E P R O M
R E A D

APERTURE E P R O M _ B A S E

PCI
CONFIG
SPACE
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 15

Internal Register Apertures

PCI Bus Access to Internal Registers
16 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 4 Data Transfer Apertures

There are four apertures provided for cross-bridge data transfers:

• PCI-to-Local apertures 0 and 1

• Local-to-PCI apertures 0 and 1

These apertures are tightly coupled to the read and write FIFOs, as well as to the address
translation and data order conversion logic as shown in Figure 4.

Each aperture includes an address comparator that sets the base and size of the aperture.
Accesses recognized by the address comparator are forwarded through the address
remapper, byte order converter, and FIFO for that particular aperture.

Additional data transfer apertures are provided for PC compatibility. These apertures are
discussed in the “PC Compatibility” chapter.

4.1 PCI-TO-LOCAL BUS APERTURES

The PCI-to-Local bus apertures control the following accesses: writes from PCI to Local
memory and reads from local memory destined for PCI space. The PCI-to-Local bus
apertures are implemented using the standard Base Register formats in the PCI
configuration header. Unused base registers return all zeros when read or interrogated
during configuration (see "PCI Configuration").

The programming of the PCI-to-Local apertures is controlled via the PCI_BASEx and
PCI_MAPx registers. The following options are programmable for each aperture:

• Base address of aperture

• Aperture size

• Type of PCI accesses to respond to (IO or memory)

• Address translation

• Data byte ordering conversion

• Read prefetch enable/disable
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 17

Data Transfer Apertures

PCI-to-Local Bus Apertures
4.1.1 Setting the PCI-to-Local Aperture Base Address and
Size

The base address for a PCI-to-Local memory aperture is set in the ADR_BASE field of the
PCI_BASEx register (see "Register Descriptions" chapter for register layouts). In non-DOS
mode, only AD[31:20] are significant yielding a minimum base address granularity of
1Mbyte.

The size of a PCI-to-Local aperture is set via the ADR_SIZE field in the PCI_MAPx register.
Supported sizes for memory access are from 1 megabyte to 2 gigabytes increasing as
powers-of-2 (1M, 2M, 4M, etc.)

When an aperture size greater than 1 megabyte is selected, the corresponding bits in the
MAP_ADR field of the PCI_BASEx register are ignored. For example, if you choose an
aperture size of 8 megabytes, then address bits A20, A21 and A22 are "masked off" by the
PCI-side aperture address comparators.

In DOS Mode, the address comparators function differently allowing greater granularity for
I/O and memory accesses (down to 8 bytes). Please see the chapter titled "DOS
Compatibility" for more details.
18 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

D
ata Transfer A

pertures
 P

C
I-to-L

oca
l B

u
s A

p
ertu

res

C
opyright ©

F
igure 4: B

lock D
iagram

 of Local-to-P
C

I A
perture/F

IF
O

 C
onnections

LOCAL MEMORY SPACE

CI
O
S)

 TO PCI
 FIFO

YTES)

PCI ADDRESS
GENERATOR

PCI DATA

TO PCI BUS
CONTROLLER

 AND 1

TURE 1
 1997-1998, V
3 S

em
iconductor Inc.

 E
P

C
 U

ser’s M
anual R

evision 1.05
19

FFFF.FFFFH

0000.0000H

D03F.FFFFH

D000.0000H

LOCAL
TO
PCI

APERTURE 1

4 MBYTE

A07F.FFFFH

A000.0000H

LOCAL
TO
PCI

APERTURE 0
8 MBYTE

LOCAL TO P
WRITE FIF
(256 BYTE

LOCAL
READ
(16 B

LOCAL TO PCI
APERTURE 1

ADDRESS
REMAPPER

ADDRESS PATH

DATA PATH

LOCAL TO PCI
APERTURE 1
BYTE ORDER
CONVERTER

AND
PCI COMMAND

INSERTION

WRITE

WRITE
DATA

READ ADDRESS

ADDRESS

READ DATA

THE LOCAL-TO-PCI WRITE FIFO.
APERTURES 0 AND 1 SHARE

APERTURE 0 LOGIC OMMITTED
CLARITY. FOR

APERTURE 0

APER

D
ata Transfer A

pertures

P
C

I-to-L
oca

l B
u

s A
p
ertu

res

20

F
igure 5: B

lock D
iagram

 of a P
C

I-to-Local A
perture/F

IF
O

 C
onnections

PCI SPACE

CAL
IFO
ES)

LOCAL ADDRESS
GENERATOR

LOCAL DATA

TO LOCAL BUS
CONTROLLER

ND 1

RE 1
E
P

C
 U

ser’s M
anual R

evision 1.05
C

opyright ©
 1997-1998, V

3 S
em

iconductor Inc.

FFFF.FFFFH

0000.0000H

PCI
TO

LOCAL
APERTURE 0

E07F.FFFFH

E000.0000H

PCI
TO

LOCAL
APERTURE 1

8 MBYTE
PCI TO LOCAL

WRITE FIFO
(256 BYTES)

PCI TO LO
READ F
(16 BYT

PCI TO LOCAL
APERTURE 1

ADDRESS
REMAPPER

ADDRESS PATH

DATA PATH

PCI TO LOCAL
APERTURE 1
BYTE ORDER
CONVERTER

WRITE

WRITE
DATA

READ ADDRESS

ADDRESS

READ DATA

THE PCI-TO-LOCAL WRITE FIFO.
APERTURES 0 AND 1 SHARE

APERTURE 0 LOGIC OMMITTED
CLARITY. FOR

APERTURE 0 A

APERTU

Data Transfer Apertures
 PCI-to-Local Bus Apertures
4.1.2 Selecting PCI Memory or I/O Space Mapping

The PCI-to-Local apertures may be mapped into PCI memory space or PCI I/O space. The
IO bit in the PCI_BASEx registers controls this mapping. When IO=1, the aperture will only
"capture" transfers on the PCI bus that are to I/O space and fall within the bounds set by the
address base and size. Similarly, when IO=0, the corresponding PCI-to-Local aperture will
only respond to memory space transfers on the PCI bus.

4.1.3 PCI-to-Local Address Translation

PCI-to-Local address translation is controlled via the MAP_ADDR field in the PCI_MAPx
register. When an access is bridged from PCI-to-Local, the upper address bits of the PCI
address are always replaced with the significant bits in the MAP_ADDR field. Which bits are
considered "significant" is controlled by the size of the aperture. For example, with a 1
megabyte aperture size, the EPC will create the local bus address by replacing the A[31:20]
of the PCI address with the entire MAP_ADR field. With larger apertures, less of upper
address bits are replaced. For example with a 2 megabyte aperture, only PCI address bits
A[31:21] will be replaced. Address remapping is "disabled" by simply setting the MAP_ADR
and ADR_BASE fields for a particular aperture to the same value.

4.1.4 Byte Order Conversion

The PCI-to-Local bus apertures also control the conversion of data byte ordering as data
flows across the bridge. Writes from PCI space to local space are converted before entry
into the write FIFO, reads from local space destined for PCI space are converted on their
way from FIFO to the PCI bus (see Figure 5). Three modes of endian conversion are
supported as is shown in Table 3. When byte order conversion is enabled, the byte enable
signals are automatically corrected for the bridge transfer.

Table 2: PCI Address Remapping By Aperture Size a

a. Some combinations are used for special DOS Compatibility apertures.

Aperture Size PCI Address Bits Replaced by MAP_ADR Bits

1 meg A[31:20]

2 meg A[31:21]

4 meg A[31:22]

8 meg A[31:23]

16 meg A[31:24]

32 meg A[31:25]

64 meg A[31:26]

128 meg A[31:27]

256 meg A[31:28]
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 21

Data Transfer Apertures

PCI-to-Local Bus Apertures
Byte order conversion is controlled through the SWAP field in the PCI_MAPx registers.

4.1.5 Enabling Read Prefetching

The EPC is capable of prefetching data for PCI-to-Local bus reads. Prefetching will often
improve performance in applications that perform many sequential reads from the same
aperture. Prefetching is discussed in more detail in “FIFO Architecture”.

Read prefetching is enabled for a PCI-to-Local aperture by setting the PREFETCH bit in the
PCI_BASEx register.

4.1.6 Disabling PCI-to-Local Bus Apertures

The PCI specification does not provide a method to explicitly disable PCI apertures that are
implemented as base registers. Disabling of the PCI-to-Local apertures is achieved by
programming the ENABLE bit in the PCI_MAPx registers.

4.1.7 Overlapping Apertures

If data transfer apertures 0 and 1 overlap, the EPC will use aperture 0 (aperture 0 has
priority). PCI_IO_BASE has the lowest priority if it overlaps either of the PCI_BASEx
regions.

4.1.8 Special Function Modes for PCI-to-Local Bus
Apertures

PCI-to-Local bus aperture 0 shares some functionality with the expansion ROM base
aperture (see “PC Compatibility”). The address decoder for PCI-to-Local aperture 0 is
shared with the expansion ROM base register. When the expansion ROM base is enabled,
the decoder will only bridge accesses within the ROM window. When the ROM is disabled,
PCI-to-Local bus aperture 0 will function as described above. Typically, the expansion ROM
is used only during BIOS boot, if at all. The expansion ROM base register can be completely
disabled via software.

PCI-to-Local bus aperture 1 includes special logic for compatibility with legacy DOS

Table 3: Byte Order Conversion Options

Input Data Bytes

Swap Mode D[31:24] D[23:16] D[15:8] D[7:0]

32-bit (no swap) D[31:24] D[23:16] D[15:8] D[7:0] Output
Data
Bytes

16-bit (half-word swap) D[15:8] D[7:0] D[31:24] D[23:16]

8-bit (word swap) D[7:0] D[15:8] D[23:16] D[31:24]
22 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Data Transfer Apertures
 Local-to-PCI Bus Apertures
systems. These functions are described in the “PC Compatibility” chapter.

4.2 LOCAL-TO-PCI BUS APERTURES

The Local-to-PCI bus apertures control the following accesses: writes from local memory to
PCI space and reads from PCI space destined for the local processor/memory space.

The programming of the Local-to-PCI apertures is controlled via the LB_BASEx and
LB_MAPx registers. Many of the features for the Local-to-PCI apertures are identical to
those for the PCI-to-Local apertures. The following options are programmable for each
Local-to-PCI aperture:

• Base address of aperture

• Aperture size

• Type of PCI command generated (memory, I/O, configuration, etc.)

• Address translation

• Endian conversion

• Read prefetch enable/disable

• Local-to-PCI aperture enable/disable

4.2.1 Setting the PCI Command Type

Each PCI address cycle includes information about the type of access being attempted (i.e.
memory, I/O, configuration). This "type of access" information is also called a PCI command,
and is encoded on the C/BE[3:0] lines of the PCI bus.

On the local side of the bridge, the EPC sees only memory reads and writes. The PCI bus,
however, supports many types of accesses. When an accesses is "captured" on the local
bus it must be converted into a specific type of PCI access. This conversion is controlled by
the TYPE bits in the LB_MAPx register. During the address phase of a PCI access, the
TYPE bits are copied directly to the C/BE[3:1] pins, while C/BE0 is set according to the
direction of the access (read or write). Table 4 shows the command encodings per the
revision 2.1 PCI specification and the appropriate TYPE field entries to generate these
encodings.

The EPC will generate commands that are "reserved" in the specification, and performs no
error checking on the validity of the encodings. The EPC will also generate a "Dual Address
Cycle (DAC)" command if programmed to do so, however, Dual Addressing is not supported
by the bridge and thus will fail during the second phase of a dual address cycle.1
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 23

Data Transfer Apertures

Local-to-PCI Bus Apertures
4.2.2 Setting the Local-to-PCI Aperture Base Address and
Size

The base address for a Local-to-PCI memory aperture is set in the ADR_BASE field of the
LB_BASEx register. Only AD[31:20] are significant yielding a minimum base address
granularity of 1Mbyte.

The size of a Local-to-PCI aperture is set via the ADR_SIZE field in the LB_BASEx register.
Supported sizes are from 1 to 21 gigabytes increasing as powers-of-2 (1M, 2M, 4M, etc.).

1. DAC is used to support 64-bit targets on a 32-bit PCI bus. It requires that the 64-bit address be given in
two back-to-back address phases followed by the burst 32-bit data phases. See the PCI specification for
more details. THE EPC DOES NOT SUPPORT DAC.

Table 4: PCI Command Encodings and Corresponding TYPE Field Values

C/BE[3:0] Command TYPE Field Value

0000 Interrupt Acknowledge 000

0001 Special Cycle 000

0010 I/O Read 001

0011 I/O Write 001

0100 reserved 010

0101 reserved 010

0110 Memory Read 011

0111 Memory Write 011

1000 reserved 100

1001 reserved 100

1010 Configuration Read 101

1011 Configuration Write 101

1100 Memory Read Multiple 110

1101 Dual-Address Cycle (DO NOT USE) 110

1110 Memory Read Line 111

1111 Memory Write and Invalidate 111

1.Version A0 of the EPC or newer will allow the Local-to-PCI apertures size up to 2Gb (on 512Mb
boundary), and the PCI-to-Local aperture size up to 1Gb (on 1Gb boundary). However, the older PBC
devices only support up to 256 Mb apertures.
24 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Data Transfer Apertures
 Local-to-PCI Bus Apertures
4.2.3 Local-to-PCI Address Translation

Local-to-PCI address translation is controlled via the MAP_ADDR field in the LB_BASEx
register. Address remapping from local-to-PCI is implemented identically to remapping in the
PCI-to-Local direction. Please see “PCI-to-Local Address Translation” on page 21 for
details.

4.2.4 Byte Order Conversion

Byte order conversion for local-to-PCI transfers is controlled through the SWAP field in the
LB_BASEx registers. For a description of byte order conversion, please see the PCI-to-
Local description above.

4.2.5 Enabling Read Prefetching

The EPC is capable of prefetching data for Local-to-PCI bus reads. Prefetching will often
improve performance in applications that perform many sequential reads from the same
aperture. Prefetching is discussed in more detail in the "FIFO Operation" section of this
chapter.

Read prefetching is enabled for a Local-to-PCI aperture by setting the PREFETCH bit in the
LB_BASEx register.

4.2.6 Enabling Local-to-PCI Bus Apertures

Unlike the PCI-to-Local registers, it is possible to explicitly enable and disable Local-to-PCI
apertures. The Local-to-PCI apertures are disabled following a reset and must be enabled
before the EPC will recognize Local-to-PCI transfers. To enable an Local-to-PCI aperture,
set the ENABLE bit in the appropriate LB_BASEx register.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 25

Data Transfer Apertures

Local-to-PCI Bus Apertures
26 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 5 FIFO Architecture and Operation

The Local bus and PCI bus are decoupled from each other through the use of FIFOs. The
FIFOs provide “elastic” storage for transfers passing across the bridge. The FIFOs also
provide the synchronization necessary when running the PCI bus and the Local bus at
different frequencies.

FIFOs are necessary to prevent performance bottlenecks that would arise if the Local and
PCI buses were connected directly. As an example, imagine a bridge with no FIFO storage.
When a local master wanted to write to the PCI bus, it would have to wait (i.e. be held NOT
READY) until the PCI bus was available before continuing operation. With FIFOs however,
the local master simply writes data into the FIFO and expects the bridge to complete the
transfer at a later time (write posting).

The size of the FIFO storage in a PCI bridge is very important, especially in high-bandwidth
applications. It is very possible that a small FIFO could be filled by a single data transfer,
leaving one of the buses "hanging" and seriously degrading system performance. The EPC
bridge includes a large amount of FIFO storage to prevent such situations from occurring.

Another important capability provided by the EPC FIFOs is called Dynamic Bandwidth
Allocation. This feature allows the programmer to control precisely how empty, or full the
FIFOs get before initiating a data transfer as well as setting the priority between reads and
writes in each direction. Dynamic Bandwidth Allocation is critical for applications using high-
bandwidth peripherals such as advanced networking, communications, and graphics
devices. The EPC also includes FIFO performance monitoring logic to allow the tuning of
system code to maximize performance.

5.1 DYNAMIC BANDWIDTH ALLOCATION FIFO ARCHITECTURE

The FIFO architecture is logically divided in two blocks: one for PCI-to-Local transfers,
another for Local-to-PCI transfers. The FIFO architecture is symmetrical: the same amount
of buffering and programmability are provided in each direction. The FIFO organization is
shown in the block diagram in Figure 6.

There are three FIFOs within the Local-to-PCI FIFO block:

• Local-to-PCI Write FIFO (256 bytes) . Buffers local bus writes to local bus data
transfer apertures 0 and 1. Also buffers DMA writes to the PCI bus. This FIFO
contains the initial address and data for a transaction.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 27

FIFO Architecture and Operation

Write FIFO Operation and Programming
• PCI Read Aperture 0 FIFO (32 bytes) . Buffers PCI bus reads from local memory
issued through PCI aperture 0. This FIFO also buffers prefetch reads from local
memory when this feature is enabled.

• PCI Read Aperture 1 FIFO (32 bytes) . Buffers PCI bus reads from local memory
issued through PCI aperture 1. This FIFO also buffers fetch-ahead reads from local
memory when this feature is enabled.

In addition, there are three FIFOs within the PCI-to-Local FIFO block:

• PCI-to-Local Write FIFO (256 bytes) . Buffers PCI bus writes to PCI bus apertures 0
and 1. Also buffers DMA writes to the local bus. This FIFO contains both the address
and data for a transaction.

• Local Read Aperture 0 FIFO (32 bytes) . Buffers local bus reads from PCI space
issued through local bus aperture 0. This FIFO also buffers fetch-ahead reads from
PCI space when this feature is enabled.

• Local Read Aperture 1 FIFO (32 bytes) . Buffers local bus reads from PCI space
issued through PCI aperture 1. This FIFO also buffers fetch-ahead reads from PCI
space when this feature is enabled.

The “Dynamic Bandwidth Allocation” feature is the ability to use the large 256-byte FIFO in
each direction for multiple transfers; both DMA and Aperture. At any one instant in time, a
FIFO can contain 1 or more of the following items:

• Aperture 0 posted writes

• Aperture 1 posted writes

• DMA 0 data

• DMA 1 data

5.2 WRITE FIFO OPERATION AND PROGRAMMING

Each write FIFO stores address, byte enable, and data information for write transfers
bridged across the EPC. The operation and programming of the PCI-to-Local and Local-to-
PCI write FIFOs are nearly identical. For brevity, this section will refer to a generic “write
FIFO operation”.

The write FIFOs are used for the following transactions:

• Writes to either data transfer aperture 0 or aperture 1

• DMA transfers destined for the PCI (local) bus
28 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

FIFO Architecture and Operation
 Write FIFO Operation and Programming
When an access is bridged from one bus to the other, the starting address of the access is
captured, translated, and then stored in the write FIFO. Subsequent data cycles are also
captured, byte-order converted, and then stored in the write FIFO as well. The state of the
byte enable lines is also captured, byte-order corrected and then stored with the data.1 This
process is shown in Figure 7 for a four word burst write from Local-to-PCI with a starting
address of 1000.4020H.

For writes from Local-to-PCI the command type to be generated for the PCI write is also
generated and stored in the Local-to-PCI write FIFO. For example, if you have programmed
Local-to-PCI aperture 1 to generate “Configuration” commands, then as the address for
Local-to-PCI Aperture 1 writes passes through the Local-to-PCI Aperture 1 address
remapper it will be “tagged” with the type of PCI command to be generated. This information
is then stored in the Local-to-PCI FIFO.

5.2.1 Write FIFO Draining Strategies

The target bus for a write transaction must be requested by the EPC in order for the write to
complete. The REQ/GNT protocol is used on the PCI bus for this purpose. The local bus
mastership protocol is dependent on the processor selected and is described in greater
detail in the “Local Bus Interface” chapter. How rapidly the target bus is requested is
programmable through the selection of a write FIFO draining strategy. The options for
draining strategies are shown in Table 5.

The choice of strategy is highly application dependent. Draining strategy “00” will result in
the fastest transfer of data from one bus to the other; however, it will also result in the most
bus traffic. Strategy “10” has the advantage of preserving bus bandwidth, but will allow small
transfers (< 3 words) to sit in the write FIFO indefinitely. Strategy “11” will preserve bus
bandwidth, but will complete the write by requesting the bus as soon as the data write
transaction filling the FIFO is complete (i.e. data will not sit in the FIFO indefinitely). The
write FIFO draining strategies are controlled via the FIFO_CFG register.

.

1. The storage space for the byte enable state is in addition to the 256-byte FIFO size.

Table 5: Summary of Write FIFO Draining Strategies

Strategy Description

00 Request target bus whenever corresponding write FIFO is not empty

01 Reserved: do not use

10 Request target bus when 3 or more words of data have been posted in the corre-
sponding write FIFO

11 Request target bus when 3 or more words of data have been posted in the write
FIFO or a burst write has been completed at the “filling end” of the FIFO
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 29

FIFO Architecture and Operation

Write FIFO Operation and Programming
Figure 6: FIFO Architecture

PCI-TO-LOCAL WRITE FIFO
256-BYTES

STORES ADDRESS AND DATA

FOR WRITES TO P-TO-L APERTURES 0/1

DMA TRANSFERS TO LOCAL MEMORY

PCI-TO-LOCAL READ FIFO 0
32 BYTES

STORES DATA READ FROM
P-TO-L APERTURE 0 ONLY

NOT USED FOR DMA TRANSFERS

PCI-TO-LOCAL READ FIFO 1
32 BYTES

STORES DATA READ FROM
P-TO-L APERTURE 1 ONLY

NOT USED FOR DMA TRANSFERS

LOCAL-TO-PCI WRITE FIFO
256-BYTES

STORES ADDRESS/COMMAND & DATA

FOR WRITES TO L-TO-P APERTURES 0/1

DMA TRANSFERS TO PCI SPACE

LOCAL-TO-PCI READ FIFO 0
32 BYTES

STORES DATA READ FROM
L-TO-P APERTURE 0 ONLY

NOT USED FOR DMA TRANSFERS

LOCAL-TO-PCI READ FIFO 1
32 BYTES

STORES DATA READ FROM
L-TO-P APERTURE 1 ONLY

NOT USED FOR DMA TRANSFERS

D31:0

D31:0

D31:0

D31:0

D31:0

A31:0

PCI
BUS

CONTROL
LOGIC

PCI
BUS

ADDRESS

GENERATOR

D31:0

LOCAL
BUS

CONTROL
LOGIC

LOCAL
BUS

ADDRESS
GENERATOR

A31:0

D31:0

D31:0

A31:0

D31:0

DATA FROM READS BRIDGED
THROUGH PCI-TO-LOCAL
APERTURE 0

DATA FROM READS BRIDGED
THROUGH PCI-TO-LOCAL
APERTURE 1

DATA FROM WRITES BRIDGED
THROUGH PCI-TO-LOCAL
APERTURES 0 AND 1, AND BOTH
DMA CHANNELS

ADDRESS FOR WRITES BRIDGED
THROUGH PCI-TO-LOCAL
APERTURES 0 AND 1, AND BOTH
DMA CHANNELS

D31:0

D31:0

A31:0

D31:0

DATA FROM READS BRIDGED
THROUGH LOCAL-TO-PCI

APERTURE 0

DATA FROM READS BRIDGED
THROUGH LOCAL-TO-PCI

APERTURE 1

DATA FROM WRITES BRIDGED
THROUGH LOCAL-TO-PCI

APERTURES 0 AND 1, AND BOTH
DMA CHANNELS

ADDRESS FOR WRITES BRIDGED
THROUGH LOCAL-TO-PCI

APERTURES 0 AND 1, AND BOTH
DMA CHANNELS AND

COMMAND

PCI CLOCK SIDELOCAL BUS CLOCK SIDE

BE3:0 BE3:0

BE3:0
BE3:0

CLOCK BOUNDARY
30 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

FIFO Architecture and Operation
 Read FIFO Operation and Programming
5.3 READ FIFO OPERATION AND PROGRAMMING

Two 16-byte read FIFOs are provided for transfers in each direction. Each transfer aperture
has a separate read FIFO as shown in Figure 6. Like the write FIFOs, the operation of each
read FIFO is identical.

The read FIFOs store data for the following transactions:

• PCI reads from local space through PCI-to-Local apertures 0 and 1

• Local bus reads from PCI space through Local-to-PCI apertures 0 and 1

The read FIFOs serve two purposes: to allow synchronization between the PCI and Local
buses and to provide storage for read prefetching. The read FIFOs only store the data for
read transfers, the address is not stored since reads request the target bus immediately (i.e.
reads are not “posted”).

5.3.1 Prefetching and Read FIFO Filling Strategies

Performance for reads from sequential locations can be improved by enabling read
prefetching. With prefetching enabled, a read FIFO will “guess” that additional read transfers
will occur and will perform burst reads to fill the FIFO with data from subsequent locations.
The aggressiveness of the prefetch is controlled via a programmable “filling strategy” for
each read FIFO. The filling strategies are controlled via the FIFO_CFG register.

As an example, let’s assume prefetching is enabled for Local-to-PCI aperture 0 (active from
1000.0000H to 107F.FFFFH, no address remapping). When the local bus master performs a
read from location 1000.0020H, the Local-to-PCI FIFO 0 will initiate a PCI burst read from
1000.0020H to 1000.002FH (4 words). The read FIFO will continue to fill itself as long as its
programmable “filling strategy” dictates.

The read FIFOs contain an address comparator that is used to determine whether or not a
new read request can be serviced from data already fetched. For example, if the Local CPU
performs a two word burst access from 100H and 104H, the read FIFO will continue to fetch
ahead from locations 108H 10CH, etc. If the Local CPU then performs a burst read from
108H and 10CH, the EPC will supply the data directly from the read FIFO. If the next access
to a read FIFO is not the next highest word address, then all entries in the read FIFO are
invalidated and the EPC fetches new data from the PCI (or Local) bus.

Table 6: Summary of Read FIFO Filling Strategies

Strategy Description

00 Request the PCI (or Local) bus whenever there is room for at least 1 word in
the read FIFO

01 Request the PCI (or Local) bus whenever there is room for at least 2 words in
the read FIFO

10 Request the PCI (or Local) bus whenever the read FIFO is empty

11 Reserved: do not use
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 31

FIFO Architecture and Operation

Read FIFO Operation and Programming
Figure 7: Detailed Operation of the Local-to-PCI Write FIFOs

FFFF.FFFFH

LOCAL MEMORY SPACE

D03F.FFFFH

D000.0000H

LOCAL
TO
PCI

APERTURE 1

4 MBYTE

WRITE
ADDRESS

103F.FFFFH

1000.0000H

LOCAL
TO
PCI

APERTURE 0

4 MBYTE

LOCAL TO PCI
APERTURE 0

ADDRESS
REMAPPER

ADDRESS PATH

DATA PATH

LOCAL TO PCI
APERTURE 0
BYTE ORDER
CONVERTER

AND
PCI COMMAND

INSERTION

LOCAL TO PCI
APERTURE 1

ADDRESS
REMAPPER

ADDRESS PATH

DATA PATH

LOCAL TO PCI
APERTURE 1
BYTE ORDER
CONVERTER

AND
PCI COMMAND

INSERTION

WRITE
DATA

10 00 40 20
11 12 13 14

22 23 24 25

33 34 35 36

44 45 46 47

ADDRESS

DATA0

DATA1

DATA2

DATA3

LOCAL TO PCI
WRITE FIFO
(256 BYTES)

APERTURE 0 AND 1

DMA LOCAL READ
DATA HOLDING

 REGISTERS

“DRAIN” TRIGGER
SIGNAL

PCI BUS INTERFACE

NOT SHOWN

* Byte enable storage

* PCI command storage

DMA DESTINATION
ADDRESS REGISTERS
32 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

FIFO Architecture and Operation
 FIFO Prioritization Options
5.4 FIFO PRIORITIZATION OPTIONS

The EPC allows reads and writes bound for completion on the same bus to be prioritized
with respect to each other. This capability is critical in systems with many PCI or local bus
masters.

For example, let’s assume that a number of writes have been posted in the Local-to-PCI
FIFO while waiting for the EPC to be granted the PCI bus. Subsequently, the local bus
master requests a read from the PCI bus. When the EPC is finally granted the PCI bus,
which transfer proceeds? If the EPC were designed like many bridges, the answer would be
“first in first out”; in other words the local processor would be forced to wait while all of the
writes in the Local-to-PCI write FIFO had completed. Luckily, the EPC includes prioritization
options that allow the read to proceed first, “unlocking” the local bus and allowing the local
CPU to get back to work.

FIFO prioritization options are described in Table 7, below.

The FIFO priority is only considered by the EPC on arbitration boundary. For example,
when reads and writes are pending, the priority decision will be made after EPC’s HOLDA is
deasserted.

5.5 FIFO DATA COHERENCY OPTIONS

Some applications will require strict data coherency. With programmable FIFOs priority, it is
possible that a write to location in memory may be prioritized behind a read to the same
location that occurred later in time. Allowing such a read to proceed would result in “stale”
data being returned to the initiator of the read. The EPC provides a programmable data
coherency mechanism to prevent this situation from occurring. Table 8 shows the coherency
mechanisms available. Coherency options are set through the FIFO_PRIORITY register.

Table 7: Read/Write Prioritization Options

Prioritization Option Result

Local bus reads ahead of writes Pending local bus reads will complete before writes are
allowed to complete. Prevents PCI bus from experiencing
multiple disconnect/retries while attempting a read of local
memory. May result in data coherency hazards (see below).

Local bus writes ahead of reads Pending local bus writes will complete ahead of reads. Pre-
vents data coherency hazards, but may cause PCI bandwidth
degradations.

PCI bus reads ahead of writes Pending PCI bus reads will complete before writes are
allowed to complete. Prevents local bus from experiencing
extended lockup while attempting a read of PCI space. May
result in data coherency hazards (see below).

PCI bus writes ahead of reads Pending PCI bus writes will complete ahead of reads. Pre-
vents data coherency hazards, but may cause local bus band-
width and CPU performance degradation.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 33

FIFO Architecture and Operation

FIFO Data Coherency Options
In addition to the options shown in Table 8, all FIFOs can be flushed immediately under
program control. Direct FIFO data flushing is performed by writes to appropriate “flush” bits
in the SYSTEM register. A FIFO flush results in all data within the FIFO being invalidated.
This is true of the write FIFOs as well: flushing a write FIFO does not result in the data in the
FIFO being written to the target bus (the data in the FIFO is simply “thrown away”). Using
this method to flush does NOT alter the state machines that fill or drain the FIFO.
Consequently, this method of flushing should not be used under normal operations. This
flushing mechanism is intended to be used only for test or fault recovery situations.

When prefetching is disabled for a particular aperture, then data flushing for that aperture
should be disabled. This does not create a coherency problem because when prefetching
disabled stale data can never remain sitting in the FIFO (only the exact amount of data
asked for will be fetched). Enabling flush for a non-prefetch aperture will result in
unpredictable read behaviour. .

5.5.1 Ensuring Strict Data Coherency

In systems where data coherency must be strictly maintained, the following options should
be selected:

• If prefetch is enabled, cause a flush of the read prefetch FIFO(s) whenever a write
occurs by programming FIFO_PRIORITY for LB_RD0,1/PCI_RD0,1 = “11”

• Program FIFO_PRIORITY so that writes have priority over reads

• Program FIFO_CFG so that the write FIFO drain strategy is “00” or “11” (this will
prevent write data from sitting in the FIFO)

Table 8: FIFO Data Coherency Options

Coherency Strategy Programmable Options for Flushing the READ FIFO

Local Bus Aperture 1 Read-Ahead
FIFO Flush Strategy

 · Local bus to PCI writes never cause a flush
 · Local bus to PCI writes to aperture 1 only cause a flush
 · Local bus to PCI writes to either aperture cause a flush

Local Bus Aperture 0 Read-Ahead
FIFO Flush Strategy

 · Local bus to PCI writes never cause a flush
 · Local bus to PCI writes to aperture 0 only cause a flush
 · Local bus to PCI writes to either aperture cause a flush

PCI Bus Aperture 1 Read-Ahead
FIFO Flush Strategy

 · PCI to local bus writes never cause a flush
 · PCI to local bus writes to aperture 1 only cause a flush
 · PCI to local bus writes to either aperture cause a flush

PCI Bus Aperture 0 Read-Ahead
FIFO Flush Strategy

 · PCI to local bus writes never cause a flush
 · PCI to local bus writes to aperture 0 only cause a flush
 · PCI to local bus writes to either aperture cause a flush
34 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

FIFO Architecture and Operation
 FIFO Data Coherency Options
5.5.2 Monitoring the Status of Read and Write FIFOs

The two write FIFOs and four read FIFOs each provide an indication of their relative
“fullness” through bits in the FIFO_STATUS register. This information can be used to help
tune “filling” and “draining” strategies, as well as to determine when there is room available
in the FIFOs for additional transactions.

The status bits for the write FIFOs indicate both the fullness of the FIFOs as well as whether
the FIFOs are in the process of filling or draining. Two bits are used in the P2L_WR and
L2P_WR fields in the FIFO_STATUS register. A description of these bits is shown in
Figure 8.

Each write FIFO has a two bit flag that indicates whether there is room for additional data.
The read FIFO status bit encoding is shown in the Register Descriptions chapter.

Figure 8: Write FIFO Status Bits

5.5.3 Ensuring the Completion of a Posted Write

Occasionally, the system software will need to ensure that a posted write has completed on
the PCI bus. There are two methods available:

• Software Polling. Before issuing the write transfer, wait for the corresponding write
FIFO to become empty (by monitoring the FIFO status bits). Then post the write and
begin monitoring the status bits again. It is a good idea to check the PCI_STATUS
register to see if any errors occurred (e.g. a Master or Target Abort).

• Hardware Stall . Program the FIFO priority for writes-ahead-of-reads. First post the
write in the write FIFO, then attempt a dummy read from the same aperture. The
dummy read will lock the local bus until the write completes. (Note: systems using
V3 Semiconductor memory controllers must take into account the effect of the bus
watch timers if those features are enabled!).

0 1 2 62 63 64

00 01

11 10

01 01

1111

Number of Words in the Write FIFO

Value in L2P_WR or P2L_WR Field
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 35

FIFO Architecture and Operation

FIFO Latency
5.6 FIFO LATENCY

FIFO latency is defined as the amount of time necessary for a word of data to flow through a
given FIFO from source to destination. Since the EPC supports fully asynchronous
operation of the PCI and local interfaces, exact latency is impossible to specify and is not
deterministic.

The only way to specify best case latencies is to assume both interfaces run at the same
frequency with little or no skew between clocks. In such a situation the latency for data
through the bridge will range from 2-4 clock cycles. An exact time cannot be given since
there is no internal synchronization between the PCI and local bus clocks within the EPC.
36 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 6 DMA Controller

The EPC’s DMA Controller includes two channels, each capable of transferring data from
Local memory to PCI, or from PCI to Local memory. The DMA Controller supports the
following features:

• Block transfers up to 4 megabytes in size for each link

• On-the-fly byte order conversion

• PCI and local transfer ranges independent of data transfer apertures

• Block chaining with no limit on the number of chained blocks

The DMA controller is useful in applications that transfer large amounts of sequential data
across the bridge. For example, an intelligent disk controller may need to transfer a data
buffer from the local memory space to the host processors’ memory space located on the
PCI bus. Using DMA is ideal in this case, since the programmer simply sets starting
addresses and the transfer count, then lets the EPC transfer the data without local or host
processor intervention.

6.1 DMA TRANSFERS

A DMA transfer consists of the movement of data by the EPC from local memory to the PCI
bus, or from PCI memory to the local bus.

6.1.1 Local Bus to PCI Bus DMA Transfers

Prior to starting local-to-PCI DMA transfers, the programmer must set the local and PCI
starting address, as well as the byte order conversion, direction, and priority options. DMA
transfers are initiated by setting the IPR bit within the DMA_CSRx register.

A Local-to-PCI DMA data transfer begins with the EPC requesting the local bus. Once the
local bus is granted, the EPC performs a local bus read to fetch the contents of the memory
location pointed to by the local DMA address register (DMA_LOCAL_ADDRx). The local bus
read performed by the DMA controller does not use the read prefetch FIFOs.The data read
from the local bus is then placed in the Local-to-PCI write FIFO, the address for the write
phase is stored in the DMA address generator. The PCI command that is used for the write
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 37

DMA Controller

DMA Transfers
cycle can be programmed via the DMA_WTYPE bits (DMA Write to PCI Bus Command Type) in
the PCI_CFG register. It defaults to a value of 3h which produces a memory write command
of "0111".

After each local bus read transfer has completed, the local address is incremented and the
transfer count register is decremented. The DMA controller will continue to repeat the above
process until the transfer count reaches zero. Since transfer count is tracked on the source
read cycle (as opposed to the destination write cycle), polling the transfer count register for a
zero value is NOT a reliable way to ensure that the transfer is complete since the data may
not yet be written to the destination and may be sitting in the FIFO. To determine that a DMA
transfer is finished and it is safe to reprogram it, the DMA_IPR bit in the DMA_CSRx register
should be polled for ’0’. If DMA_IPR is not clear, the contents of the destination address
should not be changed.

When the transfer count has reached zero, and the destination data has been written
completely, the DMA controller will either generate a “process complete” interrupt, or fetch
the next block transfer descriptor (if programmed for chaining). Block chaining is described
below.

6.1.2 PCI Bus to Local Bus DMA Transfers

PCI to Local bus DMA transfers operate nearly identically to the Local to PCI DMA transfers
described above. In this case, the data is read from the PCI side of the bridge (using a PCI
“Read Memory” command) and then posted in the PCI-to-Local write FIFO.

A flowchart of basic DMA operation is shown in Figure 10.

6.1.2.1 A Special Note on Byte Enables (Using DMA in FIFO
Applications)

When using the DMA to transfer from PCI to a FIFO on the local bus there is a special
consideration that must be accounted for. If a PCI burst read of source data is disconnected
without data1 by the slave device then a “dummy” data will be written to the local bus. This
“dummy” data is identified by the byte enables being all de-asserted. This does not cause a
problem for memory systems that implement a write-per-byte (as most do). However, an
application involving a FIFO must cause the cycle to be ignored (i.e. don't push) when
BE#[3:0] = “1111”.

6.1.3 DMA Block Chaining

Upon completion of a single block transfer, the DMA Controller can be programmed to
automatically fetch a new control block descriptor with the parameters for a subsequent
block. The descriptor includes the values for the PCI start address, Local start address,
transfer length, next control block descriptor address and control information. The initial

1. Disconnecting without data is inefficient and should be avoided by slave devices. For this reason the
EPC (as a slave device) does a disconect WITH data when necessary.
38 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

DMA Controller
 DMA Transfers
control block address is stored in the DMA_CTLB_ADRx register for each channel. DMA
control blocks may be located in local memory only. Figure 9 shows the layout of the DMA
chaining descriptor. Please note that the format for the chaining descriptor is for little-endian
memory, as this is the same format used within the EPC’s control registers.

Figure 9: DMA Chaining Descriptor Layout.

DMA chaining is controlled by the CHAIN bit in the DMA_CSRx register. Block chaining
transfers begin the same as normal DMA transfers: the first block’s start addresses, transfer
count, and control parameters are set up by the programmer in the EPC’s DMA registers.
When the first transfer completes, the DMA controller checks the CHAIN bit, and if this bit is
set, it will fetch the descriptor pointed to by the DMA_CTLB_ADRx register. Chaining
terminates when the DMA controller completes a block for which the CHAIN bit is not set.
There is no limit on how many blocks may be chained together.

6.1.4 Multi-processor DMA Chaining

A special bit in the DMA_CSR registers (called CLR_LEN) can be used to cause the length
value of the memory based DMA descriptor to be cleared once that descriptor has been
processed by the DMA controller. Therefore, looped DMA chains may be created without
redundant transfers taking place. In a multi-processor environment, this can be used to
create a large number of virtual DMA channels. A particular processor or process can be
assigned one or more of these virtual channels. They can then initiate a transfer by setting
up the memory based descriptor as desired and then updating the DMA_LENGTH portion of
the descriptor last. The next time that descriptor is processed then DMA will be performed
and then the DMA_LENGTH value cleared. Then when the looped descriptors are
processed on the next pass, no data transfer will be initiated.

In order to avoid having the DMA engine polling to aggressively on the local memory when
the descriptors are looped, the DMA_DELAY register is provided. This register controls the
number of clocks of delay between when one descriptor finishes and another is loaded. A
larger value will provide more time for other local bus masters to occupy the local bus.

6.1.5 Chain Descriptor Loading

Chain descriptors are always loaded as a burst of 4 words. As the descriptor is loaded in,
the EPC will check the CLR_LEN bit and decide, on the fly, if the last word of the burst
(DMA_CTLB_ADR) is to be internally loaded or ignored (either way, the data transfer

031

0

4

8

C

WORD
OFFSET

Next DMA_PCI_ADDRx value

Next DMA_LOCAL_ADDRx value

Next DMA_CSRx Next DMA_LENGTHx value

Next DMA_CTLB_ADDRx value
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 39

DMA Controller

DMA Transfers
happens). If CLR_LEN of the incoming descriptor is set, then the new DMA_CTLB_ADR
value will be ignored so that the old pointer remains intact. The old pointer is used to locate
the memory based DMA_LENGTH value so that it can be cleared later. Clearing of the
DMA_LENGTH value is done with a single write cycle and subsequent loading of the new
DMA_CTLB_ADR is done as a single read cycle.

Figure 10: Flowchart of Basic DMA Operation

In i t ia l ize DMA
Regis ters:

D M A _ P C I _ A D R x ,
D M A _ L O C A L _ A D R x ,

D M A _ L E N G T H x
D M A _ C T L B _ A D R x

In i t ia l ize DMA_CSRx
Regis ter w i th DMA_IPR

Bit Set

D M A _ L E N G T H x = 0

Yes

Transfer DMA Data unt i l
D M A _ L E N G T H x = 0

CLR_LEN = 1

N o

Load DMA_PCI_ADRx ,
D M A _ L O C A L _ A D R x ,

D M A _ L E N G T H x ,
DMA_CSRx f rom the

Memory Based Descr ip tor

Nex t CLR_LEN = 1

CHAIN = 1 N o

Yes

Start

End

Load Pointer to Next
Descr iptor into

D M A _ C T L B _ A D R x f r o m
the Memory Based

Descr ip tor

Yes

N o

Clea r t he DMA_LENGTH
Value in the Local

Memory Based Descr ip tor

Load Pointer to Next
Descr iptor into

D M A _ C T L B _ A D R x f r o m
the Memory Based

Descr ip tor

De lay fo r MP_WAIT
Number o f Loca l Bus

Clock Cyc les

Yes

N o

Note: these loads are done
using a single burst of 4
words. The CLR_LEN

decision is made "on-the-fly"
40 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

DMA Controller
 DMA Transfers
6.1.6 DMA Transfer Size

The DMA controller performs all transfers in word (32 bits) sizes.

For the V350EPC where the local bus is 16-bit wide, a 16 to 32-bit conversion will occur (the
EPC will wait for a second 16-bit word before writing a 32-bit word to a PCI bus). DMA
transfers begin and end on a 32-bit boundary and local bus transfers will be done 16 bits at
a time (one data phase on the PCI bus will produce two data phases on the local bus). Byte
and short (16-bit) boundaries are not supported. There is no performance penalty for this
restriction. From a software standpoint, a programmer wishing to transfer byte data need
only normalize the byte pointers to the next inclusive word boundary. This will result in
transferring more byte data than necessary, however, since the PCI bus transfers data in 32-
bit words, there is no negative performance effect.

6.1.6.1 Block Size

The largest block size that can be transferred in any single link is 4MB (minus 4 bytes). The
DMA address generator provides a 25 bit count. Therefore, if a DMA transfer will cross a
32MB boundary then the address will wrap to the bottom of the same 32MB boundary
instead of the next 32MB boundary. Larger block sizes or crosing of a 32MB boundary can
easily be accomplished using the chaining feature of the DMA controller.

6.1.7 Relationship to the Data Transfer Apertures

The DMA Controller does not use the data transfer apertures. The write FIFOs, however, are
shared between transfers initiated by a bus master through either the PCI-to-Local or Local-
to-PCI apertures, and by the DMA Controller. Figure 11 shows the usage of the write FIFOs
by both the DMA Controller and the data transfer apertures.

The read ahead FIFOs are only used during bus master read accesses through the data
transfer apertures; they are not used during DMA operations at all.

6.1.8 Automatic DMA Throttling

The DMA Controller has a built in throttling mechanism to prevent it from monopolizing the
write FIFO or target buses. The DMA Controller will not initiate a transfer if the target write
FIFO is more than half full. Once the write FIFO is drained below one quarter full, DMA
transfers involving the corresponding write FIFO will proceed.

6.1.9 Demand Mode DMA

Explicit hardware DMA request inputs can be used to throttle DMA transfers. This is
provided by the DREQ_EN bits in the DMA_LENGTHx registers which use INTC and/or
INTD as active low DMA request inputs. Hardware throttling works by allowing the source
data of a DMA transfer to be loaded only when the external DREQx pin is asserted. The act
of reading or writing local memory can be used as the DMA acknowledge.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 41

DMA Controller

DMA Transfers
Since demand mode throttling works by gating the loading of source data, it is important that
the when the local bus is the destination, it is capable of taking whatever could remain in the
internal FIFO of the EPC if wait states via READY are to be avoided. In this scinerio, up to
32 words of data could be sitting in the

6.1.10 DMA Interrupts

Each DMA Controller channel will generate an interrupt whenever the transfer count reaches
zero and the CHAIN bit in the corresponding DMA_CSRx register is zero (no further chains
to complete). There are separate requests from each channel. The DMA interrupt requests
are routed to both the Local interrupt control logic, and the PCI interrupt control logic. The
DMA interrupt requests are latched by both the PCI interrupt status register and the Local
interrupt status register and must be cleared independently in both status registers.

Figure 11: Write FIFO Usage by the DMA Controller

PCI
Space

Local
Memory
Space

PCI-to-Local
Wri te FIFO
(256 bytes)

DMA Control ler
(2 channels)

1

Local-to-PCI
Wri te FIFO
(256 bytes)

0

Read Data from
PCI Space

Read Data from
Local Memory

DMA PCI
Destination

Address

PCI to
Local

Aperture
0

PCI to
Local

Aperture
1

DMA 0
PCI
to

Local

DMA 1
PCI
to

Local

Local to
PCI

Aperture
0

Local to
PCI

Aperture
1

DMA 0
Local

to
PCI

DMA 1
Local

to
PCI

DMA Local
Destination

Address

1

0

42 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

DMA Controller
 Programming the DMA Controller
6.2 PROGRAMMING THE DMA CONTROLLER

The DMA Controller is programmed through two sets of registers, one for each of the two
channels. The DMA Controller registers are accessible from both the Local and PCI sides of
the EPC.

6.2.1 Setting the Starting Addresses

Two starting addresses must be initialized before DMA transfers can begin: the Local
memory start address and the PCI memory start address.

The Local memory starting address is programmed through the DMA_LOCAL_ADDR0 (or
DMA_LOCAL_ADDR1) register. The local memory address is word aligned. The EPC sets
the 2 least significant bits of DMA_LOCAL_ADDRx to zero in order to force word alignment.

The PCI memory starting address is programmed through the DMA_PCI_ADDR0 (or
DMA_PCI_ADDR1) register. The PCI memory address is word aligned. The EPC sets the 2
least significant bits of DMA_PCI_ADDRx to zero in order to force word alignment. The DMA
Controller can only generate PCI Read and PCI Write commands on the PCI bus.

Both address registers are automatically incremented after each word is transferred. These
registers may be read at any time to determine the current value of the pointers. The
address registers may also be written to at any time, however, the programmer should check
the “In Progress” bit (in the DMA_CSRx register) before modifying the pointers of a DMA
operation in progress. Failure to do so could result in undefined bridge operation.

As previously mentioned, the DMA Controller is unrelated to the data transfer registers. The
address translation, endian conversion, and prefetching options for the data transfer
apertures will not affect DMA operation, even if the DMA controller is performing a transfer
involving memory locations that fall within a data transfer aperture.

6.2.2 Setting the Transfer Count

The transfer count is stored in the DMA_LENGTHx register. The transfer count is in 32-bit
words. The maximum value for the transfer count is 1 megaword or 4 megabytes (longer
transfers may be performed using block chaining).

The transfer count is decremented after each word of data is transferred. The
DMA_LENGTHx registers may be read at any time to determine the current value transfer
count. The transfer count registers may also be written to at any time, however, the
programmer should check the “In Progress" bit (DMA_IPR bit in the DMA_CSRx register)
before modifying the transfer count for a DMA operation in progress. It is possible to halt
DMA operation immediately, by setting the transfer count of a DMA process in progress to
zero.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 43

DMA Controller

Programming the DMA Controller
6.2.3 Setting the Transfer Direction

The DMA transfer direction - PCI-to-Local or Local-to-PCI - is set by the DIRECTION bit in
the DMA_CSRx register. This bit must not be changed while a DMA process is running (as
indicated by the state of the DMA_IPR bit for each channel.) Changing the DIRECTION bit
while a DMA process is running will result in undefined bridge operation.

6.2.4 Byte Order Conversion

Each DMA channel can convert data byte order on-the-fly. The SWAP bits in the
DMA_CSRx register control the three conversion options: 8-bit, 16-bit, and 32-bit. Byte order
conversion by the DMA Controller is identical to that performed by the data transfer
apertures.

6.2.5 Using DMA Block Chaining

A “linked list” of DMA block descriptors must be set up in local memory before initiating a
chained DMA transfer. The individual descriptors do not need to occupy contiguous
locations in local memory, since each descriptor includes an absolute pointer to the next (in
the DMA_CTLB_ADDRx register). The address of the second descriptor in the chain is
written to the DMA_CTLB_ADDRx register for the corresponding DMA channel. The
parameters for the first block to be transferred are written directly into the DMA channel’s
address, transfer count, and control/status registers.

Each descriptor in the chain must have the CHAIN bit set in the DMA_CSRx register. The
last block must have the CHAIN bit cleared, to indicate to the DMA Controller that it is to
terminate the process after this block is complete. There is no limit to the number of blocks in
a DMA chain, in fact “ring buffers” may be easily implemented by pointing the “last” DMA
block descriptor back to the “first”.

6.2.6 Starting DMA Operation

A DMA channel begins operation when the DMA Initiate Process bit (DMA_IPR) is set in the
corresponding DMA_CSRx register. This bit is automatically cleared when the transfer count
expires and there are no further chains to process (i.e. CHAIN = 0). Writing a zero to
DMA_IPR has no affect on operation and is ignored. Once a DMA transfer has started, the
corresponding DMA registers must not be written. The only exception is the "Early
Termination" outlined below.

6.2.7 Early Termination of a DMA Process

A DMA process may be terminated in advance of completion by setting the ABORT bit in the
corresponding DMA_CSRx register.

Using the ABORT bit will also prevent the next chain from being fetched when chaining is
44 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

DMA Controller
 Programming the DMA Controller
enabled. The ABORT bit can also be used as a "pause" bit. Once paused, the same DMA
can be finished from where it left off by simply setting the DMA_IPR bit again.

Caution: There may be a delay between when the ABORT bit is set and when the
DMA_IPR bit is cleared (this is due to having source data sitting in the internal FIFO waiting
to write it to the destination). Once an ABORT has been initiated, software should poll
DMA_IPR and wait for it to be cleared.

6.2.8 Setting Priority Between the DMA Channels

The EPC provides a simple mechanism for setting the priority between the two DMA
channels. A PRIORITY bit is provided in each channel’s DMA_CSRx register. Table 9
describes the priority options that are based on the state of these bits.

Table 9: DMA Channel Priority Options

Channel 0
PRIORITY bit

Channel 1
PRIORITY bit

Result

0 0 First Come, First Served . Priority is assigned to the
channel that is the first to initiate a DMA process (have its
DMA_IPR bit set).

0 1 Channel 1 Priority . DMA channel 1 has the highest prior-
ity and will interrupt a DMA channel 0 transfer in process.
DMA channel 0 will continue its process only after DMA
channel 1 completes its transfer.

1 0 Channel 0 Priority . Same as above, except channel 0
has priority over channel 1.

1 1 Rotating Priority . The two channels rotate priority based
on the least recently granted channel. When both chan-
nels are running a DMA process, they will alternate bus
accesses.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 45

DMA Controller

Programming the DMA Controller
46 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 7 PCI Bus Interface

The EPC implements the PCI bus according to the revision 2.1 PCI Specification published
by the PCI Special Interest Group. This section assumes a familiarity with the PCI bus
specification and only describes performance and exception handling issues.

7.1 TARGET TRANSFERS

The EPC acts as a PCI target (slave) when it bridges a read or write access to one of the
PCI-to-Local data transfer apertures. There are two basic types of target transfers: reads
and writes.

7.1.1 Target Reads

The following command types fall under the category of target reads: Memory Read,
Memory Read Multiple, I/O Read, Configuration Read, Memory Read Line, and Interrupt
Acknowledge.

Upon receipt of a PCI-to-Local read request, the EPC will attempt to access the local bus by
asserting the local bus request signal (BREQ or HOLD). The EPC supports delayed reads
when the RD_POST_INH bit is clear. This causes an immediate retry when a PCI read is
initiated where there is no valid data present in the prefetch buffer.

If read posting is disabled, then no retry will be performed. Instead, TRDY will be delayed
until the local cycle produces data.

PCI burst reads that cross a 1k byte address boundary will be broken into two smaller bursts
by the EPC. This is done by issuing a PCI disconnect to the initiator as the burst crosses the
1k byte boundary.

PCI-to-Local I/O reads require one additional clock of address decoding when using the fine
grain I/O PCI-to-Local aperture (see “DOS Compatibility”).

Target mode reads through the PCI-to-Internal Register aperture (PC_IO_BASE) will have 3
wait-states inserted between each data cycle.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 47

PCI Bus Interface

Target Transfers
Figure 12: EPC PCI Target Mode Reads (read posting disabled)

7.1.2 Target Writes

The following command types fall under the category of target writes: Memory Write,
Memory Write and Invalidate, I/O Write, Configuration Write and Special Cycle.

Upon receipt of a PCI-to-Local write request, the EPC will attempt to complete the write by
placing the data in the PCI-to-Local write FIFO. The EPC will complete each data phase by
asserting TRDY until either the write completes (see Figure 13), or there is no room left in
the write FIFO. If the PCI-to-Local write FIFO becomes full, the EPC will issue a PCI
disconnect (see below).

PCI burst writes that cross a Burst boundary, as determined by PBRST_MAX in the
FIFO_CFG register, will be broken into two smaller bursts by the EPC. This is done by
issuing a PCI Disconnect to the initiator as the burst crosses the Burst boundary.

PCI-to-Local I/O writes require one additional clock of address decoding when using the fine
grain I/O PCI-to-Local aperture (see “DOS Compatibility”).

Figure 13: EPC PCI Target Mode Aperture Writes

PCLK

REQ

GNT

FRAME

AD31:0

C/BE

IRDY

TRDY
(FROM PSC)

LOCAL-REQ

0 1 2 3 4 5 N+1 N+2 N+3 N+4 N+5 N+6

D2ADDR D1D0 D3

READ BE# BE# BE# BE#

WAITING FOR

LOCAL BUS

BUS REQUEST SIGNAL (NAME AND POLARITY MAY BE DIFFERENT)

PCLK

AD31:0

C/BE3:0

FRAME

IRDY

TRDY

STOP

DEVSEL

0 1 2 3 4 5

D2A0 D1D0 D3

WRITE BE0 BE1 BE2 BE3

76 8 9 10 11 12

FIFO is about to go full
(disconnect - B)

FIFO remains full
(retry)

FIFO not full

A3 D3

WRITE BE3

13 14 15 16 17

A3 D3

WRITE BE3

D4

BE4

FIFO not full again
(data transfer continues)
48 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PCI Bus Interface
 Target Transfers
7.1.3 PCI Exceptions During EPC Target Cycles

The EPC only generates recoverable exceptions when acting as a PCI target.

7.1.3.1 Recoverable Exception: Target Disconnect

The EPC will generate a PCI Disconnect under the following conditions:

• A burst in progress completely fills the PCI-to-Local write FIFO.

• A PCI burst is attempted to a PCI-to-Local aperture that is disabled for bursting.

• A burst in progress crosses a 1k byte burst boundary, or exceeds the programmed
maximum burst length for the aperture (as determined by the PBRST_MAX field in
FIFO_CFG).

• A burst in progress is pre-empted.

• The time between two TRDY assertions in a burst exceeds 8 PCI clocks.

7.1.3.2 Recoverable Exception: Target Retry

The EPC will generate a PCI Retry under the following conditions:

• A PCI write is attempted to an already full PCI-to-Local write FIFO.

• A PCI access is attempted to the Local space while the local master is attempting a
PCI access through the EPC. The EPC issues a Retry to prevent a possible
deadlock.

• A PCI access is attempted while the EPC is initializing from the serial EEPROM.

• Posted reads are enabled (Bit 15 in PCI_MAPx is clear) and a read to a location not
previously prefetched is performed.

7.1.4 PCI Access of EPC Internal Registers

The internal registers of the EPC can be accessed in two ways from the PCI bus:

• Through PCI "Configuration Space" when the IDSEL input is high during the address
phase and a configuration cycle type is identified on the C/BE[3:0] signals.

• Through the PCI_IO_BASE base register address as either I/O or memory.

The following waveforms illustrate the timing of a PCI master access to the internal
registers.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 49

PCI Bus Interface

Initiator Transfers
Figure 14: PCI Read and Write of Internal EPC Registers

7.2 INITIATOR TRANSFERS

The EPC acts as a PCI initiator (master) when it bridges a read or write access to one of the
Local-to-PCI data transfer apertures. There are two basic types of initiator transfers: reads
and writes.

7.2.1 Initiator Reads

The following command types fall under the category of initiator reads: Memory Read,
Memory Read Multiple, I/O Read, Configuration Read, Memory Read Line, and Interrupt
Acknowledge.

The EPC will attempt to perform the fastest PCI read cycle possible (IRDY wait states are
not inserted by the EPC) as shown in Figure 15 through Figure 18.

PCI reads always require a lead-off wait-state to allow for bus turnaround between the
address and data phases. A PCI read cycle may be extended by slower targets not returning
TRDY until the target is ready to return data.

PCLK

AD31:0

C/BE3:0

FRAME

IRDY

TRDY

DEVSEL

PCI Master Burst Read From PBC Internal Registers

D0 D1

0 1 2 3 4 5 6 7 8

ADDR

BE for D0 BE for D1IORD

9

PCLK

AD31:0

C/BE3:0

FRAME

IRDY

TRDY

DEVSEL

PCI Master Burst Write to PBC Internal Registers

0 1 2 3 4 5 6 7 8

ADDR

BE for D0 BE for D1IOWR

9

D0 D1

10

10
50 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PCI Bus Interface
 Initiator Transfers
7.2.2 Initiator Writes

The following command types fall under the category of initiator reads: Memory Write,
Memory Write and Invalidate, I/O Write, Configuration Write and Special Cycle.

The EPC will attempt to perform the fastest PCI write cycle possible as shown in Figure 19
through Figure 22. Unlike PCI read cycles, PCI writes do not require bus turnaround
between the address and data phases. A PCI write cycle may be extended by slower targets
not returning TRDY until the target is ready to receive data.

When the LB_WR_PCI bits in FIFO_CFG register are programmed to ’00’, the local bus
write cycle will cause a PCI bus request as soon as possible. Other settings of LB_WR_PCI
will cause REQ assertion to be delayed.

Table 10: FIFO control for Local Bus Write to PCI Bus Aperture 0 and 1

LB_WR_PCI Result

00 Assert PCI bus request immediately whenever the corresponding FIFO is not empty

01 Reserved

10 Assert PCI bus request whenever the Local bus to PCI corresponding FIFO has 3 or
more words of data pending

11 Assert PCI bus request whenever the Local bus to PCI corresponding FIFO has 3 or
more words of data pending or the FIFO is not empty and the local bus master ends
a burst write cycle to the FIFO
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 51

PCI Bus Interface

Initiator Transfers
Figure 15: V350EPC (i960 mode) Initiated PCI Read Cycle

LC
LK AS

LA
31

:1
6

LA
D

15
:0

BE
1:

0

AL
E

W
/R

BL
AS

T

R
EA

D
Y

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

D
0L

D
1H

PC
LK

R
EQ G
N

T

FR
AM

E

AD
31

:0

C
/B

E

IR
D

Y

TR
D

Y

D
EV

SE
L

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14

D
2

AD
D

R
D

1

AD
D

R

D
0

D
3

R
EA

D
BE

=

"0
00

0"

D
0H

D
1L

A+
2

A+
4

A+
6

16
17

18

15
16

17
18

D
2H

D
2L A+

8
A+

10

D
3H

D
3L A+

12
A+

14
52 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PCI Bus Interface
 Initiator Transfers
Figure 16: V350EPC (961 mode) Initiated PCI Read Cycle

LC
LK

A
D

S

LA
D

31
:0

LA
5:

2

A
LE

W
/R

B
LA

S
T

R
D

Y
R

C
V

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

D
0

D
3

P
C

LK

R
E

Q

G
N

T

F
R

A
M

E

A
D

31
:0

C
/B

E

IR
D

Y

T
R

D
Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14

D
2

A
D

D
R

D
1

A
D

D
R

D
0

D
3

R
E

A
D

B
E

=

 "
00

00
"

D
1

D
2

A
+

0
A

+
1

A
+

2
A

+
3

Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 53

PCI Bus Interface

Initiator Transfers
Figure 17: V360EPC (962 mode) Initiated PCI Read Cycle

LC
LK

A
D

S

LA
31

:2

LD
31

:2

W
/R

B
LA

S
T

R
E

A
D

Y

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

D
0

D
3

P
C

LK

R
E

Q

G
N

T

F
R

A
M

E

A
D

31
:0

C
/B

E

IR
D

Y

T
R

D
Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14

D
2

A
D

D
R

D
1

A
D

D
R

D
0

D
3

R
E

A
D

B
E

=

 "
00

00
"

D
1

D
2

A
1

A
2

A
3

54 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PCI Bus Interface
 Initiator Transfers
Figure 18: V360EPC (292 mode) Initiated PCI Read Cycle

LC
LK

LR
E

Q

LA
31

:2

ID
31

:2

R
/W

B
U

R
S

T

R
D

Y

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

D
0

D
3

P
C

LK

R
E

Q

G
N

T

F
R

A
M

E

A
D

31
:0

C
/B

E

IR
D

Y

T
R

D
Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14

D
2

A
D

D
R

D
1

A
D

D
R

D
0

D
3

R
E

A
D

B
E

=

 "
00

00
"

D
1

D
2

A
1

A
2

A
3

Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 55

PCI Bus Interface

Initiator Transfers
Figure 19: V350EPC (960 mode) Initiated PCI Write Cycle
LC

LK A
S

LA
31

:1
6

LA
D

15
:0

B
E

1:
0

A
LE

W
/R

B
LA

S
T

R
E

A
D

Y

0
1

2
3

4
5

6
7

8
9

10
11

12

P
C

LK

R
E

Q

G
N

T

F
R

A
M

E

A
D

31
:0

C
/B

E

IR
D

Y

T
R

D
Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

10
11

12

A
D

D
R

D
1

A
D

D
R

D
0

W
R

IT
E

B
E

#
B

E
#

D
0L

D
0H

D
1H

D
1L

13

13

A
+2

A
+6

A
+4

A
+0
56 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PCI Bus Interface
 Initiator Transfers
Figure 20: V350EPC (961 mode) Initiated PCI Write Cycle
LC

LK

A
D

S

LA
D

31
:0

B
E

3:
0

A
LE W
/R

B
LA

S
T

R
D

Y
R

C
V

0
1

2
3

4
5

6
7

8
9

10
11

12

P
C

LK

R
E

Q

G
N

T

FR
A

M
E

A
D

31
:0

C
/B

E

IR
D

Y

TR
D

Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

10
11

12

D
2

A
D

D
R

D
1

A
D

D
R

D
0

D
3

W
R

IT
E

B
E

#
B

E
#

B
E

#
B

E
#

D
0

D
1

D
3

D
2

A
+8

A
+1

2
A

+0

13

13

A
+4
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 57

PCI Bus Interface

Initiator Transfers
Figure 21: V360EPC (962 mode) Initiated PCI Write Cycle

LC
LK

A
D

S

A
31

:2

D
31

:0

W
/R

B
LA

S
T

R
E

A
D

Y

0
1

2
3

4
5

6
7

8
9

10
11

12

D
0

D
3

P
C

LK

R
E

Q

G
N

T

FR
A

M
E

A
D

31
:0

C
/B

E

IR
D

Y

TR
D

Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

10
11

12

D
2

A
D

D
R

D
1

A
D

D
R

D
0

D
3

W
R

IT
E

B
E

#

D
1

D
2

B
E

#
B

E
#

B
E

#

A
1

A
2

A
3

1313
58 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PCI Bus Interface
 Initiator Transfers
Figure 22: V360EPC (292 mode) Initiated PCI Write Cycle

LC
LK

LR
E

Q

LA
31

:2

ID
31

:0

R
/W

B
U

R
S

T

R
D

Y

0
1

2
3

4
5

6
7

8
9

10
11

12

D
0

D
3

P
C

LK

R
E

Q

G
N

T

FR
A

M
E

A
D

31
:0

C
/B

E

IR
D

Y

TR
D

Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

10
11

12

D
2

A
D

D
R

D
1

A
D

D
R

D
0

D
3

W
R

IT
E

B
E

#

D
1

D
2

B
E

#
B

E
#

B
E

#

A
1

A
2

A
3

13

13
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 59

PCI Bus Interface

Initiator Transfers
7.2.3 PCI Exceptions During EPC Initiated Cycles

There are two categories of exceptions that can be generated on the PCI bus:

Fatal Exceptions: These are conditions from which recovery is not possible such as Master
Abort (attempted access to non-existent device) and Target Abort (unrecoverable error
within a target).

Recoverable Exceptions: These are exceptions from which recovery is guaranteed such
as Disconnect and Retry. A target disconnect, for example, is used by a target to discontinue
a burst that is longer than it can accommodate in a single transfer. This exception is
recovered by simply starting another PCI cycle to complete the transaction.

Fatal exceptions are reported to the local processor by a processor interrupt. Recoverable
exceptions are handled transparently by the EPC.

7.2.3.1 Fatal Exception: Master Abort (Reads)

A Master Abort occurs when the EPC does not receive a DEVSEL in response to a read or
write attempt. This typically results from an attempt to access a non-existent device.

The EPC responds to Master Abort conditions during a read as follows:

• READY is returned to the local processor to “unlock” the local bus. The data
returned is FFFFFFFFH. Optionally, a PCI read exception interrupt can be
generated.

• The M_ABORT bit in the PCI_STAT register is set.

7.2.3.2 Fatal Exception: Master Abort (Writes)

Since PCI writes are posted by the EPC, it is conceivable that a Master Abort exception can
occur long after the local bus write completes. In this case it makes no sense to generate a
bus error on the local bus.

The EPC responds to Master Abort conditions during a write as follows:

• A PCI write exception interrupt is generated (maskable).

• The M_ABORT bit in the PCI_STAT register is set.

7.2.3.3 Fatal Exception: Target Abort (Reads)

A Target Abort occurs when the EPC receives a target abort indication from the currently
addressed target. Target Abort is only used in the most extreme cases since it implies that
the target is in the system (i.e. a DEVSEL is received), however it is permanently incapable
of responding to the request.

 The EPC responds to Target Abort conditions during a read as follows:
60 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PCI Bus Interface
 Initiator Transfers
• READY is returned to the local processor to “unlock” the local bus. The data
returned is indeterminate. Optionally, a PCI read exception interrupt can be
generated.

• The T_ABORT bit in the PCI_STAT register is set.

As a target, the PCI will never generate a target abort.

7.2.3.4 Fatal Exception: Target Abort (Writes)

Since PCI writes are posted by the EPC, it is conceivable that a Target Abort exception can
occur long after the local bus write completes. In this case it makes no sense to generate a
bus error on the local bus.

The EPC responds to Target Abort conditions during a write as follows:

• A PCI write exception interrupt is generated (maskable).

• The T_ABORT bit in the PCI_STAT register is set.

7.2.3.5 Recoverable Exception: Target Disconnect

A target responds with a Target Disconnect when it is no longer capable of receiving data
during a transaction. For example, if a target’s write buffer became full during a long burst it
can issue a Target Disconnect to break the burst into smaller “pieces”. Target Disconnect
informs the initiator that the burst can be restarted at the point at which the disconnect
occurred (i.e. the initiator does not need to repeat the entire burst).

The EPC handles Target Disconnect transparently by simply restarting the transaction at the
point at which it was “disconnected”. No errors are reported since no data is lost.

7.2.3.6 Recoverable Exception: Target Retry

A target responds with a Target Retry when it is not capable of receiving data during a
transaction. For example, if a target is currently too busy to respond to a PCI request, it can
issue a Retry to tell the initiator “come back later”. Target Retry informs the initiator that the
burst must be restarted from the beginning (i.e. the initiator needs to repeat the entire burst).

The EPC handles Target Retry transparently by simply restarting the transaction at the point
at which it was “retried”. No errors are reported since no data is lost.

7.2.4 Initiator Pre-Emption

A PCI initiator is said to be pre-empted whenever its GNT line is deasserted during an active
transfer. When the GNT is deasserted, the EPC checks its latency timer. If the latency timer
has not expired, the EPC will maintain ownership of the bus until the timer reaches zero. If
the latency timer has reached zero, the EPC will relinquish the PCI bus following the next
data transfer. Both cases are shown in Figure 23.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 61

PCI Bus Interface

Initiator Transfers
Figure 23: Initiator Pre-Emption

PCLK

GNT

LT-COUNT

FRAME

TRDY

IRDY

0 1 2 3 4 5 6 7

PRE-EMPTED

4 3 2 1 0

EXAMPLE 1: PRE-EMPTED BEFORE LATENCY TIMER EXPIRES

PCLK

GNT

LT-COUNT

FRAME

TRDY

IRDY

0 1 2 3 4 5 6 7

PRE-EMPTED

0

EXAMPLE 2: PRE-EMPTED AFTER LATENCY TIMER EXPIRES

1

62 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 8 Local Bus Interface

The EPC family devices are designed to be directly connected to i960®(Am29KTM) family
processors without the use of any "glue logic". The local bus protocol used by the EPC
devices duplicate the bus protocol of the corresponding i960(Am29K) processor. For
example, the EPC uses the same bus protocol as the i960(Am29K).

The EPC acts as both a local bus target and as a local bus master. This section of the
manual describes the local bus interface for all versions of the EPC family.

8.1 TARGET MODE

The local bus interface is said to be in target mode when the EPC is responding to read and
write requests from the local bus master (normally an i960(Am29K) family processor). There
are currently three i960 processor buses supported: i960Sx (V350EPC in V960 mode),
i960Jx (V350EPC in V961 mode), i960Cx/Hx (V360EPC in 962 mode) and two AMD
processor buses:Am29030/40(V360EPC in 292 mode).

8.1.1 Local Bus CPU Configuration

Some local bus CPU devices, such as the i960Cx, have programmable bus parameters
such as wait states and bus size. The EPC devices work at the largest bus width of the
processor which is 32 bits for all EPC members except the V350EPC (960 mode) which is
16 bits to match the i960Sx 16 bit data width. Also, the EPC devices control the number of
wait states for each access and do not rely on the processors programmable wait state
generators. Therefor, for the regions that access the EPC, the CPU should be set up for 32
bit bus width (16 for the V350EPC), external ready enabled and minimum wait state settings.

8.1.2 Local Reads and Writes to Internal Registers

Reads and writes to the EPC’s internal registers occur through the Local-to-Internal Register
aperture defined by the LB_IO_BASE register. Internal register read/writes always take 2
wait-states in burst mode. Since the internal registers can be accessed from both PCI and
local buses, the number of initial wait states for local access is dependent on the interaction
of internal arbitration with PCI. To accomodate this, control of the local bus READY signal
is provided by the EPC. Burst accesses are permitted to internal registers. Figure 24 through
Figure 27 show a local-to-internal register read/write access for each of the EPC
components.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 63

Local Bus Interface

Target Mode
Figure 24: Local Master Read/Write to Internal V350EPC Registers (i960Sx Bus) 1

1. ALE signal required but not shown

LCLK

AS

LA31:16

LAD15:0

W/R

BLAST

READY

ADDR

i960Sx Master Read From V960PBC

i960Sx Master Write To V960PBC

D0 D1

0 1 2 3 4 5 6 7 8

LCLK

AS

LA31:16

LAD15:0

W/R

BLAST

READY

ADDR

D0 D1

ADDR

ADDR
64 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local Bus Interface
 Target Mode
Figure 25: Local Master Read/Write to Internal V350EPC Registers (i960Jx Bus)

Figure 26: Local Master Read/Write to Internal V360EPC Registers (i960Cx/Hx Bus)

LCLK

ADS

LAD31:0

W/R

BLAST

RDYRCV

i960Jx Master Burst Read From V961PBC

i960Jx Master Write To V961PBC

D0 D1

0 1 2 3 4 5 6 7 8

ADDR

LCLK

ADS

LAD31:0

W/R

BLAST

RDYRCV

D0 D1

0 1 2 3 4 5 6 7 8

ADDR

LCLK

ADS

LA31:2

LD31:0

W/R

BLAST

READY

ADDR ADDR+4

i960Cx/Hx Master Burst Read From V962PBC

i960Cx/Hx Master Burst Write To V962PBC

D0 D1

0 1 2 3 4 5 6 7 8

LCLK

ADS

LA31:2

LD31:0

W/R

BLAST

READY

ADDR ADDR+4

D0 D1
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 65

Local Bus Interface

Target Mode
Figure 27: Local Master Read/Write to Internal V360EPC Registers (Am29030/40 Bus)

8.1.3 Local Read from Local-to-PCI Apertures

Local reads from PCI space take place through the Local-to-PCI apertures. The initial read
to any aperture will incur the full penalty of waiting for the corresponding read to complete on
the PCI bus. The local bus is held NOT READY until the first datum is available from the PCI
bus. Subsequent reads will complete as fast as is possible based on the following:

• How many words, if any, are buffered in the read FIFO.

• Whether or not prefetching is turned on for the aperture.

• How large a delta there is in the operating frequencies of the PCI and local bus.

The fastest local bus reads will complete is one wait-state for address-to-data and then zero
wait-states for data to data. Zero wait-state reads will only occur when the read in progress
is “draining” prefetched data from a Local-to-PCI read FIFO.

The EPC will attempt to perform the fastest local read cycle possible as shown in Figure 15
through Figure 22.

8.1.4 Local Write to Local-to-PCI Apertures

Local writes to PCI space take place through the Local-to-PCI apertures. Writes are posted

LCLK

LREQ

LA31:2

ID31:0

R/W

BURST

RDY

ADDR ADDR+4

Am29030/40 Master Burst Read From V292PBC

Am29030/40 Master Burst Write To V292PBC

D0 D1

0 1 2 3 4 5 6 7 8

LCLK

LREQ

LA31:2

ID31:0

R/W

BURST

RDY

ADDR ADDR+4

D0 D1
66 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local Bus Interface
 Target Mode
at zero wait-state until no room is left in the write FIFO. Attempts to write to a full write FIFO
will result in the local bus being held NOT READY until room becomes available. Figure 32
through Figure 35 show the fastest local bus writes to the Local-to-PCI write FIFO.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 67

Local Bus Interface

Target Mode
Figure 28: V350EPC (960 mode) PCI Posted Read from Local Bus

LC
LK

H
O

LD

H
O

LD
A

A
D

S

A
LE

LA
31

:1
6

LA
D

15
:0

LA
5:

2

B
E

1:
0

W
/R

B
LA

S
T

R
E

A
D

Y

A
0

D
1L

D
0H

D
0L

D
1H

B
E

0L
B

E
1H

B
E

0H
B

E
1L

D
3L

D
2H

D
2L

D
3H

B
E

2L
B

E
3H

B
E

2H
B

E
3L

0
1

2
3

4
5

7
6

8
9

10
11

12
13

14
15

16
17

A
0

P
C

LK

F
R

A
M

E

A
D

31
:0

C
/B

E

IR
D

Y

T
R

D
Y

S
T

O
P

D
E

V
S

E
L

0

D
2

A
0

D
1

D
0

D
3

R
E

A
D

B
E

3
B

E
1

B
E

2

1
2

3
4

5
7

6
8

9
10

11
12

13
14

15
16

17

B
E

0
B

E
0

A
0

R
E

A
D

18
19

20
21

18
19

20

A
0

A
0+

4
A

0+
C

A
0+

8

68 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local B
us Interface

 T
a

rget M
od

e

C
opyright ©

F
igure 29: V

350E
P

C
 (961 m

ode) P
C

I P
osted R

ead from
 Local B

us

0

D2D10 D3

BE3BE1 BE2

1 2 3 4 5 76 8 9 10 11 12 13 14 15 16 17

12 13 14 15 16 17
 1997-1998, V
3 S

em
iconductor Inc.

 E
P

C
 U

ser’s M
anual R

evision 1.05
69

PCLK

FRAME

AD31:0

C/BE

IRDY

TRDY

STOP

DEVSEL

A0 D

READ

LCLK

HOLD

HOLDA

ADS

ALE

LAD31:0

LA5:2

BE3:0

W/R

BLAST

READY

A0 D2D1D0 D3

BE0 BE3BE1 BE2

0 1 2 3 4 5 76 8 9 10 11

BE0BE0

A0

READ

A0 A0+4 A0+8 A0+C

Local B
us Interface

T
a

rget M
od

e

70

F
igure 30: V

360E
P

C
 (962 m

ode) P
C

I P
osted R

ead from
 Local B

us

D2 D3

BE3BE2

2 13 14 15 16 17

12 13 14 15 16 17
E
P

C
 U

ser’s M
anual R

evision 1.05
C

opyright ©
 1997-1998, V

3 S
em

iconductor Inc.

PCLK

FRAME

AD31:0

C/BE

IRDY

TRDY

STOP

DEVSEL

0

A0 D1D0

READ BE1

1 2 3 4 5 76 8 9 10 11 1

LCLK

HOLD

HOLDA

ADS

LA31:2

LAD31:0

BE3:0

W/R

BLAST

READY

A0 A2A1 A3

BE0 BE3BE1 BE2

0 1 2 3 4 5 76 8 9 10 11

BE0BE0

A0

READ

D2D1D0 D3

Local B
us Interface

 T
a

rget M
od

e

C
opyright ©

F
igure 31: V

360E
P

C
 (292 m

ode) P
C

I P
osted R

ead from
 Local B

us

0

D2 D3

BE31 BE2

1 2 3 4 5 76 8 9 10 11 12 13 14 15 16 17

12 13 14 15 16 17
 1997-1998, V
3 S

em
iconductor Inc.

 E
P

C
 U

ser’s M
anual R

evision 1.05
71

PCLK

FRAME

AD31:0

C/BE

IRDY

TRDY

STOP

DEVSEL

A0 D1D0

READ BE

LCLK

LBREQ

LBGNT

LREQ

LA31:2

ID31:0

BWE3:0

R/W

BURST

RDY

A0 A2A1 A3

0 1 2 3 4 5 76 8 9 10 11

BE0BE0

A0

READ

D2D1D0 D3

Local B
us Interface

T
a

rget M
od

e

72

F
igure 32: V

350E
P

C
 (960 m

ode) Initiated Local W
rite C

ycle

0 1 2 3 4 5 76 8 9 10 11 12 13 14 15 16 17

D3LD2HD2L D3H

BE2L BE3HBE2H BE3L

12 13 14 15 16 17

A0+CA0+8
E
P

C
 U

ser’s M
anual R

evision 1.05
C

opyright ©
 1997-1998, V

3 S
em

iconductor Inc.

LCLK

HOLD

HOLDA

ADS

ALE

LA31:16

LAD15:0

LA5:2

BE1:0

W/R

BLAST

READY

PCLK

FRAME

AD31:0

C/BE

IRDY

TRDY

DEVSEL

D2ADDR D1D0 D3

WRITE

A0

BE0 BE3BE1 BE2

D1LD0HD0L D1H

BE0L BE1HBE0H BE1L

0 1 2 3 4 5 76 8 9 10 11

A0

A0 A0+4

Local Bus Interface
 Target Mode
Figure 33: V350EPC (961 mode) Initiated Local Write Cycle

LC
LK

H
O

LD

H
O

LD
A

A
D

S

A
LE

LA
D

31
:0

LA
5:

2

B
E

3:
0

W
/R

B
LA

S
T

R
E

A
D

Y

P
C

LK

F
R

A
M

E

A
D

31
:0

C
/B

E

IR
D

Y

T
R

D
Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14

D
2

A
D

D
R

D
1

D
0

D
3

W
R

IT
E

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14

B
E

0
D

3

A
0

B
E

1
B

E
2

D
0

D
3

D
1

D
2

B
E

0
B

E
3

B
E

1
B

E
2

A
0

A
0+

4
A

0+
8

A
0+

C

Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 73

Local Bus Interface

Target Mode
Figure 34: V360EPC (962 mode) Initiated Local Write Cycle

LC
LK

H
O

LD

H
O

LD
A

A
D

S

LA
31

:2

LD
31

:0

W
/R

B
LA

S
T

R
E

A
D

Y

P
C

LK

F
R

A
M

E

A
D

31
:0

C
/B

E

IR
D

Y

T
R

D
Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

D
2

A
D

D
R

D
1

D
0

D
3

W
R

IT
E

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

D
0

D
3

A
0

D
1

D
2

A
1

A
2

A
3

B
E

0
B

E
3

B
E

1
B

E
2

74 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local Bus Interface
 Target Mode
Figure 35: V360EPC (292 mode) Initiated Local Write Cycle

LC
LK

LB
R

E
Q

LB
G

N
T

LR
E

Q

LA
31

:2

ID
31

:0
, B

W
E

3:
0

R
/W

B
U

R
S

T

R
D

Y

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

D
0

D
3

P
C

LK

F
R

A
M

E

A
D

31
:0

C
/B

E

IR
D

Y

T
R

D
Y

D
E

V
S

E
L

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

D
2

A
D

D
R

D
1

A
0

D
0

D
3

D
1

D
2

A
1

A
2

A
3

W
R

IT
E

B
E

0
B

E
3

B
E

1
B

E
2

Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 75

Local Bus Interface

Target Mode
8.1.5 Target Mode PCI Error Signalling

Target mode reads and writes to/from PCI space may cause a number of PCI errors (see
“PCI Interface”). The EPC reports these errors for reads by:

• Asserting RDY to unlock the local bus.

• Generating a maskable interrupt to both the local and PCI interrupt controllers.

Figure 36 shows the case of a PCI read error caused by a Master Abort (attempt to access a
non-existent PCI device). Write errors are handled differently since they will complete on the
PCI bus some time after the local master has posted them in the write FIFO. Write errors are
reported only through the PCI error interrupt. See “PCI Bus Interface” for more details.

Figure 36: PCI Error Signalling (all bus types)

8.1.6 Deadlock Conditions and Resolution

There is a potential deadlock condition that exists whenever two or more local processor/
bridge combinations are used in a system. This condition manifests itself as follows:

• One local master attempts to read the local memory of another processor on the PCI
bus; simultaneously the other processor is attempting to read the first processor’s
local memory.

• Per the PCI spec, the master in control of the PCI bus receives a “retry”, however,
since that master is performing a read it cannot return data to its processor, and
therefore maintains a NOT READY indication to that processor. This situation
effectively keeps the other processor involved off the local bus.

Since neither of these reads can proceed, the PCI bus is at a deadlock. If the write FIFO
becomes full then there is also a similar deadlock issue involving writes.

CLKIN

ADS

W/R

LA31:2

LAD31:0

LD31:0

READY

LINT

ADDR = LB_BASE+OFFSET

0 1 2 3 4 5 6 7

ADDR
76 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local Bus Interface
 Master Mode
The EPC resolves this problem automatically by detecting “overdue” unresolved reads or
writes on the local bus. A timer can be enabled (LB_CFG register) that will time-out on any
access that takes longer than 64-1024 clocks to complete will be deemed overdue, and can
be terminated by asserting RDY and/or LINT (to indicate a PCI access error). A software
handler must be used to recover from the error. For processors that provide a bus backoff or
retry mechanism (such as the i960Cx/Hx processors and the Am29030/40 processors) fully
transparent deadlock avoidance is possible as described in section “Deadlock Avoidance
using the BTERM as an Output” on page 84.

8.2 MASTER MODE

The local bus interface is said to be in master mode when the EPC is performing local read
and write requests in response to PCI or DMA accesses.

8.2.1 Requesting the Local Bus

The local bus is requested by the EPC by asserting the HOLD(LBREQ) signal. Local bus
access is granted by the local bus arbiter by returning the HOLDA(LBGRT) signal.

8.2.2 Local Bus Size

The local bus master interface on the EPC can support 8, 16 and 32 bit target devices. This
is controlled through the LB_SIZE register. The local bus address space is sub-divided into
16 regions of 256MB. For each of these regions, the bus width can be determined
separately. For 16 bit bus modes, there are 2 options:

• 16 bit packed: a PCI to local read/write that only involves bytes in one half of the 32
bit word (15:0 or 31:16) will result in only a single local bus transfer. The result is
that a burst sequence can “skip” cycles where no data is to be transferred.

• 16 bit un-packed: a PCI to local read/write that only involves bytes in one half of the
32 bit word (15:0 or 31:16) will result in two consecutive transfers done as a burst
where the BE1:0 will be de-asserted for the cycle that doesn’t involve any data
transfer. Consequently, burst cycles will always be linear.

Table 11: PCI to 16 Bit Local Packed Mode Transfers (little endian)

PCI Local PCI Local
C/BE3:0 1st cycle 2nd cycle C/BE3:0 1st cycle 2nd cycle

0000 D15:0 D31:16 1000 D15:0 D23:16
0001 D15:8 D31:16 1001 D15:8 D23:16
0010 D7:0 D31:16 1010 D7:0 D23:16
0011 D31:16 1011 D23:16
0100 D15:0 D31:16 1100 D15:0
0101 D15:8 D31:16 1101 D15:8
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 77

Local Bus Interface

Master Mode
Figure 37: Connection of 8 and 16 bit Peripherals to the V350EPC

Figure 38: Connection of 8 and 16 bit Peripherals to the V360EPC

0110 D7:0 D31:16 1110 D7:0
0111 D31:24 1111

Table 11: PCI to 16 Bit Local Packed Mode Transfers (little endian)

PCI Local PCI Local
C/BE3:0 1st cycle 2nd cycle C/BE3:0 1st cycle 2nd cycle

V350EPC 8 Bit
Peripheral

1:0

16 Bit
Peripheral

3
0

1

7:0

15:0

* Li t t le Endian Mode Shown
For Big Endian:
 use 31:24 with 8 bit peripherals
 use 31:16 with 16 bit peripherals

*

*

AD(31:0)

BE(3:0)

W / R #

A D S

BLAST

R E A D Y

D(7:0)

A(1:0)

R D

W R

D(15:0)

B H E
BLE

A1

R D

W R

V96SSC
or

PLD

V360EPC 8 Bit
Peripheral

1:0

16 Bit
Peripheral

3
0

1

7:0

15:0

* Li t t le Endian Mode Shown
For Big Endian:
 use 31:24 with 8 bit peripherals
 use 31:16 with 16 bit peripherals

*

*

31:28

D(31:0)

BE(3:0)

A(31:2)

W / R #

A D S

BLAST

R E A D Y

D(7:0)

A(1:0)

R D

W R

D(15:0)

B H E
BLE

A1

R D

W R

PLD
78 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local Bus Interface
 Master Mode
8.2.2.1 Local Bus Endian Mode

The endian mode of the local bus is set with the ENDIAN bit in the LB_CFG register. This bit
controls how data is sequenced in 8 and 16 bit regions on the local bus when the EPC is a
local bus master. It does NOT effect the access to internal registers or access to 32 bit local
bus regions. It also has not direct relationship to swapping.

8.2.3 Data Swapping

Data swapping options are available for each of the PCI-to-local and local-to-PCI address
translation units. In the local-to-PCI direction, swapping is controlled by the LB_BASEx
registers. In the other direction PCI_MAPx is used. Each DMA channel also has individual
control over this option. These options are used to translate between big endian local bus
processors and little endian PCI space. Unfortunately, there is no way to provide a
universal endian converter because processors that cache data can burst data of differing
size. However, if 8/16 bit loads/stores are always done as 8/16 bit operations, then the
"Auto Swap®" mode can be used. It works by examining the size of the transfer based on
how many byte lanes are enabled. When BE[3:0] = “1100” or “0011” then a 16 bit swap is
done. When BE[3:0] = “1110”, “1101”, “1011” or “0111” then an 8-bit swap is done. Any other
combination results in non-swapped data.

Table 12: Translation of 32 Bit PCI Data into an 8 Bit Local Bus Region

Little Endian (ENDIAN=0) Big Endian (ENDIAN=1)

Access A1:0 Data (Via D7:0) A1:0 Data (Via D31:24)

1st 00 D7:0 11 D31:24

2nd 01 D15:8 10 D23:16

3rd 10 D23:16 01 D15:8

4th 11 D31:24 00 D7:0

Table 13: Translation of 32 Bit PCI Data into an 16 Bit Local Bus Region

Little Endian (ENDIAN=0) Big Endian (ENDIAN=1)

Access A1 Data (Via D7:0) A1:0 Data (Via D31:24)

1st 0 D15:0 1 D31:16

2nd 1 D31:16 0 D15:0

Table 14: Swap Mux Options

Description SWAP D[31:24] D[23:26] D[15:8] D[7:0]

no swap, 32 bit 00 Q[31:24] Q[23:16] Q[15:8] Q[7:0]

16 bit 01 Q[15:8] Q[7:0] Q[31:24] Q[23:16]

8 bit 10 Q[7:0] Q[15:8] Q[23:16] Q[31:24]

Auto Swap 11 Auto Swap (not available for DMA transfers)
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 79

Local Bus Interface

Master Mode
8.2.4 i960 Local Bus Reads and Writes

The local bus protocol used by the EPC family components is identical to that of the target
processor: V960EPC duplicates the i960Sx protocol, the V961EPC duplicates the i960Jx
protocol, and the V962EPC duplicates the i960Cx/Hx protocol.

All EPC’s support bursts longer in length than the i960 processor limit of 4 words (8
transaction on the i960Sx devices). The maximum burst length supported is 256 words. The
end of the burst is indicated by the BLAST signal, as is the case with "standard" i960 buses.
The burst length on the local bus is programmable via the LBRST_MAX field in the
FIFO_CFG register. Bursts may also be terminated at any time by asserting the BTERM
signal. The burst will re-start with another ADS assertion at the point it was terminated.

V3 has chosen not to duplicate the wait-state control logic found in the i960Cx (MCON
registers) and i960Hx (PMCON registers).1

8.2.5 Am29K Local Bus Reads and Writes

The V292EPC provides two different local bus protocols for Am29030/40 style busses: high-
performance mode and strict compatibility mode. The two modes differ in the BURST signal
assertion timing and in the length of bursts supported.

8.2.5.1 Strict Compatibility Mode

In strict compatibility mode the BURST signal is asserted coincident with the assertion of
LREQ (see Figure 39). This mode duplicates the bus protocol shown in the Am29030/40
documentation. When a series of access cycles are done by the V360EPC (292 mode) on
the local bus (such as a series of burst writes) the LREQ signal will be de-asserted for one
cycle between bursts. This is done so that the BURST and LREQ signals can occur
simultaneously at the beginning of a burst or non-burst cycle.

1.This logic is of no use in systems using DRAM as main memory, as the wait-state profile
for DRAMs is indeterminate (due to refresh cycles.)
80 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local Bus Interface
 Master Mode
Figure 39: V360EPC (292 mode) Local Bus Master Access (Strict Compatibility Mode)

8.2.5.2 High-Performance Mode

In systems that choose to use high-performance mode, both BURST and LREQ are
asserted as soon as the V360EPC (292 mode) begins a cycle (LCLK 1 and LCLK 3 in Figure
40). If the cycle is a non-burst cycle then BURST is de-asserted on the next cycle (LCLK2).
If a burst is really going to happen then BURST remains asserted until before the last data
transfer of the burst (LCLK 6) as it normally would. If the local bus slave devices don’t care
about the state of BURST on the first cycle then the high performance mode will save one
cycle and should be used by setting the FAST_REQ bit in the SYSTEM register.

The V360EPC (292 mode) defaults to strict compatibility mode following reset. The local bus
mode is changed by writing to the FAST_REQ bit in the SYSTEM register. System using the
V292BMC/CMC Burst DRAM Controller can take advantage of the high performance mode
and will also work when strict compatibility mode is selected.

Figure 40: V360EPC (292 mode) Local Bus Master Access (High-Performance Mode))

LCLK

LREQ

LA31:2

ID31:0

R/W

BURST

RDY

0 1 2 3 4 5 6 7 8 9

DATA D2

ADDR

D0 D1

ADDR A+4 A+8

ADDED NON-LREQ# CYCLE

BURST TERMINATE

LCLK

LREQ

LA31:2

ID31:0

R/W

BURST

RDY

0 1 2 3 4 5 6 7 8 9

DATA D2

ADDR

D0 D1

A+0 (start of burst) A+4 A+8
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 81

Local Bus Interface

Burst Support
8.3 BURST SUPPORT

The EPC is designed to accommodate bursting of up to 1K bytes on both the PCI and local
buses. Long bursting is accomplished by programming the PBRST_MAX and LBRST_MAX
bits in the FIFO_CFG register to select the 1K byte (256 word) burst size. Simply selecting a
1K burst size will not guarantee a full 1K uninterrupted burst - other parameters must be
considered that will limit the burst size:

• For aperture writes (local bus master writes PCI bus or PCI bus master writes local
bus) the burst length on the source bus will determine the length on the destination
bus if it is shorter than the value of the corresponding PBRST_MAX or
LBRST_MAX.

• For the case of local to PCI access: burst length will be limited by PCI target devices
by asserting STOP (bus retry) at its burst limit.

• In the case of read prefetch, bursts will terminate if the prefetch FIFO becomes full.

• Burst length on the local bus will be limited by the memory systems ability to support
long bursts and not by the burst size of the processor on the local bus. Controllers
such as the V96SSC, V96BMC, V96CMC, V292BMC and V292CMC will all support
1K bursts. Attempting to do long bursts to memory systems incapable of supporting
them will result in lost or corrupt data.

• When using the V96BMC Rev D with the V350EPC or V360EPC please note that
the BMC Rev D device strictly follows the i960 bus protocol which does not allow
byte enables to change on a burst. However, the EPC has been allowed to be more
flexible by allowing the byte enables to change in a burst. Therfore, you need to take
this fact in consideration when you are using the V96BMC Rev D with the EPC.

-- V3 Modification (VHDL CODE) for a Small PLD:
-- Explanation: BTERM# must be driven only when a write
-- cycle is being initiated by the EPC when not all
-- the byte enables are driven.
--
-- This fix creates a better cohesion between the BMC
-- and the EPC since the BMC adheres strictly
-- to the i960 protocol and the EPC has more flexibility
-- to allow byte transfers to occur. Please note that
-- this fix is not required when an SSC is used as the
-- memory controller. (This occured because the
-- BMC was designed before the EPC was designed,
-- and the SSC came after the EPC).
--

process
begin
wait until(clkin'event and (clkin = '1'));
82 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local Bus Interface
 BTERM Operation (961 and 962 mode Only)
-- identify the troublesome cycle by EPC
fix_qads <= (not l_ads_n) and pci_hlda and l_wr_n;

end process;

-- disconnect (block) the troublesome cycle from EPC
l_bterm_n = '0' when(not((l_be_n3 & l_be_n(1 downto 0))

 = "000") and fix_qads='1') else
'1' when(pci_hlda = '1') else 'Z';

Bursts by the EPC are always terminated at a burst modulo page boundary. For example: if
a 1K burst length is selected then the EPC will never cross a 1K page boundary (it will never
burst from address XXXXX3FCH to XXXXX400H). Similarly, if a 16 byte (4 word) burst is
selected it will never burst from XXXXXX0CH to XXXXXX10H. This makes the EPC
comparable to processors and page mode memory devices.

8.4 BTERM OPERATION (961 AND 962 MODE ONLY)

This section is applicable only to the EPC in 961 and 962 modes.

The BTERM signal is used in two ways. When the EPC is a local bus master, the BTERM
input acts as a "Burst Termination" input with the same timing as the READY input. When
the EPC is a local bus slave for local aperture to PCI read/write operations, the BTERM
signal can be programmed to drive as an output for time-out conditions.

Note that BTERM must have a pull up resistor on the pin even if it is not being used in as an
input or output as described below.

8.4.1 BTERM as an Input

The EPC will respond to BTERM together with READY as if BLAST had been asserted also
with READY. This will cause the ADS signal to be re-driven to start a new cycle where the
original burst left off. The sequence is depicted below: It begins as a normal EPC local bus
master cycle with HOLD/HLDA/ADS being driven in sequence. At LCLK 6 the first data is
READY and the cycle looks like a normal burst. However, at LCLK 7 BTERM is asserted
with READY and the cycle terminates as if BLAST had been asserted at that time. At LCLK
7 the EPC begins to drive ADS again and with the address for data item 3 left over from the
previous unfinished burst. This burst cycle terminates normally with BLAST and READY at
LCLK 12.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 83

Local Bus Interface

BTERM Operation (961 and 962 mode Only)
Figure 41: BTERM as in Input

Additionally, the assertion of BTERM can be used in conjunction with the de-assertion of
HLDA to give another local bus master ownership of the bus so that the EPC won’t "hog" the
bus when long bursts are performed. When a burst is terminated (with or without BTERM
asserted) and more data transfer is pending, the EPC will drop its’ HOLD request for one
cycle at the end of the burst if the HLDA signal is taken away before the end of the cycle
thus allowing another higher priority master to gain control of the bus. This is NOT the way
that i960 processor usually drives its’ HLDA output. Thus HLDA back to the EPC must be
driven by a gated version of HLDA from the processor - typically from an arbiter device. The
following diagram (Figure 42) illustrates the sequence.

Figure 42: Early Suspension of EPC Local Bus Ownership

In summary, the BTERM used as an input will terminate bursts similar to a PCI burst
disconnect. When the HLDA input is used with BTERM, a high priority local bus device can
gain access to the local bus by kicking off the EPC early.

8.4.2 Deadlock Avoidance using the BTERM as an Output

The BTERM signal can be used to indicate a time-out condition when a local bus master is
trying to access the PCI bus through one of the EPC apertures. This operation is enabled
through the LB_CFG register bit 9. When enabled, a time-out condition (as defined in the
description given in the LB_CFG register) will cause the normally high-Z BTERM signal to
be driven low for one LCLK and then high for one clock before being returned to its’ high-Z
state. A time-out condition is usually caused by a deadlock situation, where the local
processor is attempting to access resources on another similar subsystem while the local
processor of that other subsystem is attempting to access resources on the local bus of the

LCLK

HOLD

HLDA

ADS

BLAST

READY

BTERM

0 1 2 3 4 5 6 7 8 9 1110 12 13 14

LCLK

HOLD

HLDA

ADS

BLAST

READY

BTERM

0 1 2 3 4 5 6 7 8 9 1110

Alternate Bus MasterPBC is Bus Master PBC is Bus Master

12 13 14 15 16 17 18
84 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local Bus Interface
 Local Bus Parity
first processor. On processors (such as the i960CA) that have a BOFF input, it is possible to
break the deadlock by generating a BOFF from the BTERM output of the EPC. This is
accomplished with a simple modification to the local bus arbiter device (typically a
Programmable Logic Device). An example implementation is given below.

Figure 43: Circuit for Generation of Processor BOFF from V962EPC B TERM Output

Figure 44: Waveform Showing Deadlock Avoidance Using BTERM and BOFF

BTERM at LCLK 257 is detected by the Arbiter and used to generate BOFF. When BOFF is
asserted to the processor, it will cause it to float most of its signals as if it had lost mastership
of the bus. Internally the processor is held as if in wait state waiting to see a READY
assertion. This gives the EPC a chance to take mastership of the bus when it receives HLDA
(hold acknowledge). With its’ data transfer complete at LCLK 263, the EPC de-asserts its
hold request. BOFF is then de-asserted to the processor causing it to reassert its’ ADS
strobe. This restarts the previously timed out access via the EPC to PCI address space.
With the deadlock broken, this access now completes normally. This provides an automatic
hardware solution to the deadlock problem: no deadlock handling software is required.

8.5 LOCAL BUS PARITY

The EPC is capable of generating and checking data parity on the local bus. When acting as
a local bus master, the EPC generates one bit of parity information for each byte of data
during write cycles. During read cycles by the EPC or any other local bus master, the EPC
can perform parity checking.

V962PBC

H O L D

H O L D A

B T E R M #

ARBITER
PAL

i960Cx
C P U

H O L D

H O L D A

BOFF#

Vcc

LCLK

HOLD

HLDA

ADS

BLAST

READY

BTERM

BOFF

0 255 256 257 258 259 260 261 262 265264

i960 is Bus Master PBC is Bus Master

266 267 268 269 270 271263

i960 is Bus Master
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 85

Local Bus Interface

Local Bus Parity
Parity generation and checking is intended for operation with an external memory system or
peripheral device. It is commonly used with DRAM arrays where single bit errors can occur
due to the nature of these devices. Consequently, valid parity is not asserted when the EPC
is a slave device on the local bus. In this case the value of the parity signals should be
treated as "unknown".

8.5.1 Relationship between Local Parity and PCI Parity

There is no direct relationship between PCI bus parity and local bus parity since they both
operate in a different manner and for a different purpose. PCI parity is provided as a means
to ensure the integrity of point-to-point, master-to-slave connections. Local bus parity, on the
other hand, is designed to check the integrity of a local bus memory system typically
implemented with DRAM. This requires that the local bus parity information travel on the bus
with the same timing as the data. This is not the case with PCI parity which lags the data by
one clock cycle.

.

8.5.2 Local Bus Parity Generation

Valid byte parity is driven out on to the LPARx pins whenever a master write cycle is
performed and with the same timing as write data is driven onto the data bus (or LAD bus in
the case of the V350EPC). This allows the local bus memory system to store the parity
information as if it is extra data. This differs from PCI parity in that PCI parity lags the data by
one clock cycle making it more difficult to store along with the data in a memory array (this is
not the intention of PCI parity).

The EPC generates parity ONLY for itself when acting as a local master (PCI-to-local
aperture writes and PCI-to-local DMA transfers). Other masters (such as the CPU) must
generate their own parity when they perform write cycles. Parity is also NOT generated by
the EPC when it is a local bus slave (either for access to the internal registers or for Local-to-
PCI aperture access).

Table 15: Comparison of PCI and Local Parity

PCI Parity Local Parity

Number of parity signals 1 4

Parity calculation 1 bit for: AD[31:0], C/BE[3:0] 1 parity bit per data byte

Parity generation generated by receiver of data generated by bus master

Data to parity relationship parity lags data one clock parity and data together

Data to parity error relationship error lags data two clocks error lags data one clock
86 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Local Bus Interface
 Local Bus Parity
The four parity bits are generated according to Table 16:

8.5.3 Local Bus Parity Checking

Each LCLK cycle, the EPC checks parity on the local bus and drives the SCL/LPERR signal
accordingly on the next cycle. Consequently, the SCL/LPERR signal must be qualified to
allow only valid regions of address space to be checked. Figure 45 shows the relationship
between data, parity and the parity error output. Note that the parity error output LPERR
lags the parity and data by one clock.

The local bus parity feature is intended for use only with local master cycles. That is,
LPAR[3:0] are driven with valid parity information when the EPC is performing a write cycle
as the local bus master. While parity is always being checked by the internal circutry, the
only relavent cycles where parity checking is valid are EPC local bus master read cycles
where the slave device is something like 36 bit DRAM. Parity is not generated for access to
the EPC by an external master.

Figure 45: Timing Relationship Between Parity, Data and the Parity Error Output

The circuit in Figure 46 is an example of how the LPERR signal should be qualified to
generate a high priority interrupt to signal a parity error to the local processor.

Table 16: Relationship between Parity Output Signals and Output Data

LPAR3 xor(LD[31:24], POEa)

a.POE bit of the SYSTEM register (Parity Odd/Even)

LPAR2 xor(LD[23:16], POE)

LPAR1 xor(LD[15:8], POE)

LPAR0 xor(LD[7:0], POE)

LCLK

LAD/LD31:0

LPAR3:0

SCL/LPERR

READY

D0 D3 (bad)

0 1 2 3 4 5 6 7 8

D2D1 (bad)

D0 D3 (bad)D2D1 (bad)
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 87

Local Bus Interface

Local Bus Parity
Figure 46: Qualification of Parity Error to Generate High Priority Interrupt

PLD equations

qual.d = ready & !wnr & mem_cs;/* intermediate qualifier signal */

nmi.d = lperr & qual /* Non Maskable Interrupt to CPU

P L D

SCL/LPERR

R E A D Y

W / R

LCLK

V96xPBC

Memory System Chip Select or
Read Strobe

To Non Maskable Interrupt
input of Local CPU
88 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 9 PCI Confi guration

The EPC may be used as both a host or target bridge device. As such, the EPC can both
generate configuration cycles and respond to them. This chapter describes both types of
PCI configuration.

9.1 CONFIGURATION AS A SYSTEM HOST BRIDGE

The EPC acts as a host bridge when it is used to configure other PCI devices in the system.
For example, a laser printer that uses an i960® as the main CPU and uses PCI as the
mezzanine bus, would run configuration cycles to initialize PCI peripherals such as ethernet
chips and SCSI controllers.

9.1.1 EPC Host Configuration Mechanism

PCI configuration cycles consist of setting a specified target’s IDSEL line active, then
performing reads and writes to the configuration space of the selected peripheral. The
IDSEL line is deasserted after accesses to the target peripheral’s configuration space are
complete.

9.1.2 Controlling Target IDSEL Lines

The EPC does not provide a direct control of the state of individual targets’ IDSEL lines. The
system hardware must provide a mechanism for activating the IDSEL line for each target (if
the EPC is to be used as a host bridge). IDSEL is not like other PCI signals in that it need
not be synchronous with each configuration cycle. IDSEL must be active during the address
phase to select the EPC.

An external register is the simplest method for controlling IDSEL. V3’s Am29KTM PCI
motherboard (the Lion-29K), for example, uses a PAL device that sets and clears specific
IDSEL lines based on accesses to specific memory locations in local space.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 89

PCI Configuration

Configuration as a System Host Bridge
9.1.3 Generating Configuration Reads and Writes

The address placed on the bus during configuration cycles is actually encoded information
as shown in Figure 47. The EPC does not automatically generate this encoding, it is
completely under software control. The configuration address encoding is programmed as
follows:

• Setup one of the Local-to-PCI apertures as 16 megabytes in length. This forces the
address translation logic to pass the lower 24 bits of the address through to the PCI
bus without translation. The lower 24 bits of the address are the encoded
configuration information. The base address in Local memory for this aperture may
be placed on any 16Mbyte boundary.

• Setup the address translation for the above aperture to translate accesses to
0000.0000H. Since the aperture is setup for 16Mbytes, this has the effect of setting
A[31:24] to zeros. Set the TYPE field for the Local-to-PCI aperture to “Configuration
Reads/Writes”.

• Create a 24-bit value that encodes the configuration address information. Add the
base address of the Local-to-PCI aperture to this encoded information.

• Perform a read (or write) to the above address in local space. This will be translated
to a configuration read (or write) in PCI space.

In the above example, it is assumed that the IDSEL lines are set appropriately by the user’s
system hardware and software.

Figure 47: Encoded Configuration Address Information

9.1.4 Using Configuration Information

The following information is usually determined during configuration:

• What PCI devices are present in the system and what type of devices they are

• What resources are necessary for each device in terms of memory, I/O, and
interrupts

• What capabilities each of the devices has (i.e. Fast Back-to-Back capable)

0481216202428

0 0REGISTER
NUMBER

DEVICE
NUMBER

BUS
NUMBER

FUNCTION
NUMBER

RESERVED
90 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PCI Configuration
 Configuration as a Target Bridge
The PCI Specification describes in detail the information available during PCI configuration
and how to retrieve that information. The usage of that information is highly application
dependent and is beyond the scope of this manual.

9.1.5 Determining the Presence of Target Devices During
Configuration

A Master Abort will occur if the system host attempts to access the configuration space of a
device that is not present. This occurs, for example, when the IDSEL line for an empty PCI
slot is activated and a configuration cycle is run. When this occurs, the EPC sets the Master
Abort bit in the PCI_STATUS register and returns FFFF.FFFFH to the host. This combination
of events is used to determine the presence of PCI devices in a system following a reset.

Typically, the following mechanism is used during the boot code:

• Each IDSEL line is activated in turn and a configuration read is attempted from the
Vendor ID register

• If a vendor ID of FFFFH is detected it means that the current IDSEL line is not
connected to a valid device (FFFFH is a reserved Vendor ID for just this purpose)

• If a valid vendor ID (i.e. not FFFFH) is detected, further configuration of the device is
performed

Most systems will elect to disable PCI error interrupts during configuration.

9.2 CONFIGURATION AS A TARGET BRIDGE

The EPC responds to type 0 configuration cycles when acting as a target bridge. Type 1
(PCI-to-PCI bridge) configuration cycles are ignored.

The following information is usually retrieved from a target device during configuration:

• The number and size of I/O and memory address regions required (read from the
PCI base registers)

• The vendor ID, device ID, and device type information from the PCI header

• Any supplemental information provided for in the PCI header

9.2.1 EPC Base Register Response to Configuration Inquiries

Most information is read by the system host directly from the EPC’s configuration space
registers. For example, Vendor ID is retrieved simply by reading the Vendor ID register.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 91

PCI Configuration

Configuration as a Target Bridge
The following are exceptions to the above:

• Size requested for PCI-to-Local data transfer apertures (PCI_BASEx registers).

• Size requested for expansion ROM transfer apertures (PCI_ROM register).

In both of these cases the PCI Specification outlines a two step interrogation process. First,
each base address register is written with FFFF.FFFFH. Then the base register is read back.
The value read back indicates the size and capabilities of the aperture (see Figure 48).

As an example, let’s assume that PCI-to-Local bus aperture 0 is programmed for 4
megabytes in memory space with prefetching enabled. When the system host interrogates
this register it will read back FFC0.0004H which is interpreted as:

• The aperture is four megabytes in size, since the first “1” seen in the address field
(scanning up from bit 4) is at the 4M level

• The aperture can be located anywhere in the 32-bit address space on a 4MB
boundary

• The aperture is memory mapped

• The aperture is “prefetchable”

The EPC sets the size information according to the size of the aperture specified in the
PCI_MAPx register. Unused base registers in the EPC return all zeros.

Figure 48: Base Register Return Information

0481216202428

ADDRESS SIZE
FIRST ‘1’ INDICATES SIZE

PREFETCHABLE

TYPE
00 = ANYWHERE IN 32-BIT ADDRESS SPACE
01 = LOCATE BELOW 1 MB
10 = ANYWHERE IN 64-BIT ADDRESS SPACE
11 = RESERVED

MEMORY/IO
0 =MEMORY, 1=I/O

0 =NOT PREFETCHABLE, 1=PREFETCH OK

Example of Address Size Usage:
A ‘1’ here, followed by all zeros
down to bit 4 indicates an 8MB
window.
92 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PCI Configuration
 Configuration as a Target Bridge
9.2.2 EPC Expansion ROM Base Register Response to
Configuration Inquiries

The expansion ROM base register is interrogated using the same method outlined above:

• All ones are written to the register (with the exception of the enable bit).

• The requested size is read back from the same register.

The format for the expansion ROM base return information is shown in Figure 49. The size
information is determined from the expansion ROM size field set in the EPROM_MAP
register.

Additional inquiries may be necessary depending on the host platform architecture. PCI
based PCs, for example, will map the expansion ROM into memory and then scan for the
ROM present signature of 55AAH. Please refer to the PCI BIOS spec for your particular
target architecture for more information.

Figure 49: Expansion ROM Register Return Information

0481216202428

ADDRESS SIZE
FIRST ‘1’ INDICATES SIZE

DECODE ENABLE
0 =DISABLED 1=ENABLED

Example of Address Size Usage:
A ‘1’ here, followed by all zeros
down to bit 11 indicates a 64KB
expansion ROM.

RESERVED
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 93

PCI Configuration

Configuration as a Target Bridge
94 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 10 PC Compatibility

The EPC includes several features to improve compatibility when used as a target bridge in
real mode PC/DOS systems. Real mode DOS systems have several limitations:

• Memory accesses are limited to below 1 megabyte. Add-in cards designed for real
mode DOS typically use small blocks of memory located between A0000H and
F0000H

• I/O devices use small blocks of I/O space, often with pre-defined addresses

The EPC provides a real mode DOS aperture than can be used to emulate DOS memory
and I/O apertures for backward compatibility. It is important to note that these features fall
outside of the PCI specification and can be disabled for strict compliance.

10.1 REAL MODE DOS COMPATIBILITY APERTURE

When the ADR_SIZE field of the PCI_MAP1 register (not available for Aperture 0) is
configured for DOS compatibility mode then the PCI_BASE1 register is interpreted
differently than the standard PCI definition. The need for this is a consequence of the fact
that the original ISA bus based PC only decoded A9 down to A0 for I/O space address
mapping. DOS mode addressing allows up to 3 holes in the PCI address space to be
decoded that are useful for emulating DOS peripherals. There are 2 options depending on
how the IO bit is set in the corresponding PCI_BASE register:

• IO = ‘0’ allows for up to 2 decoders for PCI I/O cycles in addition to a single memory
decoder for PCI memory cycles in the region between 512KB and 1MB

• IO = ‘1’ allows for up to 3 decoders for PCI I/O cycles

Whenever a PCI cycle is detected by the DOS mode decoder (I/O or memory) then a
corresponding bus cycle will be seen in a 1MB aperture on the local bus. The base address
of that aperture is determined by the MAP_ADR field of the PCI_MAPx register. Within the
local bus aperture, the first 64K will typically be used as the local bus remapping of PCI I/O
cycles. For I/O cycles all relevant I/O addresses (up to A15) are mirrored on the local bus so
that address aliasing information is carried across as DOS mode peripherals expect.

DOS memory region decode doesn’t remap the address space within the 1MB aperture.
Therefore, if a region is decoded starting at PCI address 0xA0000 then it will appear at
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 95

PC Compatibility

Real Mode DOS Compatibility Aperture
0xA0000 + the 1MB region selected by MAP_ADR in the PCI_MAP register.

The operation of DOS mode decode can be more easily understood with the following
diagrams.

Figure 50: DOS Compatibility Mode Memory Decoding and Address Translation

30

PCI_MAP Re g ister

A[31..19]=0000000000001

9 8 7 6 5 4 3 2 1 0

PCI Address Bits

19 18 17 16 15 14 13 12 11 10

9 8 7 6 5 4 3 2 1 019 18 17 16 15 14 13 12 11 10

Local Bus Address Bits

203031

3031 20

31 20

128K

64K

32K

16K

18 17

18 16

18 17

17

16 15

18 17 16 15 14

PCI_BASE Re g ister

Enable when
Bit 0 (IO) = '0' 0

PCI_BASE[10:8]=111

PCI_BASE[10:8]=110

PCI_BASE[10:8]=101

PCI_BASE[10:8]=100
96 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

PC Compatibility
 Example: VGA Peripheral
Figure 51: DOS Compatibility Mode I/O Decoding and Address Translation

10.2 EXAMPLE: VGA PERIPHERAL

Standard VGA addressing requires 3 address decodes:

• VGA Memory accesses - 0xA0000 - 0xBFFFF (128K bytes)

• VGA I/O accesses - AD[9:0] = 0x3B0 - 0x3BF (16 bytes) in addition to all ISA aliases
where AD[15:10] are not decoded

• VGA I/O accesses - AD[9:0] = 0x3C0 - 0x3DF (32 bytes) in addition to all ISA aliases
where AD[15:10] are not decoded

Such an address map can be decoded through a single aperture by programming one of the
sets of PCI_BASE and PCI_MAP registers in the following way:

• PCI_MAP: ADR_SIZE = 1110 to select a 16 and 32 byte I/O decode.

Upper Address = "Don' t Care"

'0'

31 30 29 28 27 26 25

9 8 7 6 5 4 3 2 1 0

PCI Address Bi ts

19 18 17 16 15 14 13 12 11 10

24 23 22 21 20 19

30 29 28 27 26

23 22 21 20 19

8 Byte

16 Byte

16 Byte

32 Byte

20 25

30 29 28 27 26

23 22 21 19

16 Byte

64 Byte

20 25

30 29 28 27 26

23 22 21 20 19

16 Byte

16 Byte

20 25

18 17 16 15 14 32 Byte

9 8 7 6 5 4 3 2 1 019 18 17 16 15 14 13 12 11 10

Local Bus Address Bi ts

203031

3031 20

3031 20

PCI_MAP Register

'0' '0' '0'

0 1=Enab le

PCI_BASE
 Register

1=Enab le

1=Enab le

1=Enab le

1=Enab le

1=Enab le

17 16 15 14 32 Byte0 1=Enab le

17 16 15 14 32 Byte0 1=Enab le

17 16 15 14 32 Byte0 1=Enab le

ADR_SIZE = 1100

31

24

18

ADR_SIZE = 1101

31

24

18

ADR_SIZE = 1110

31

24

18

ADR_SIZE = 1111
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 97

PC Compatibility

Example: VGA Peripheral
• PCI_BASE[10:8] = 111 to select a 128K memory space.

• PCI_BASE: IO bit = 0 to enable the 3rd decode to be in memory space instead of I/O
space.

• PCI_BASE[31:25] = 1110111 to enable a decode of AD[9:0] = 0x3B0 - 0x3BF for PCI
I/O cycles.

• PCI_BASE[24:19] = 111101 to enable a decode of AD[9:0] = 0x3C0 - 0x3DF for PCI
I/O cycles.

• PCI_BASE[18:17] = 01 to decode PCI memory cycles in the address range 0xA0000
- 0xBFFFF.
98 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 11 Mailbox Re gisters

Occasionally it is necessary to pass small amounts of data or commands between the PCI
bus and the Local bus. For example, an intelligent EPC based PCI disk controller may need
to receive “get sector” commands from the x86 system host. Such commands could be sent
to the local CPU by PCI-to-Local memory transfers into a command buffer, followed by a
PCI interrupt request to indicate transfer completion. Using this method, however, is very
inefficient, especially when only a handful of bytes need to be transferred.

To solve this problem, the EPC provides 16 mailbox registers which may be used to transmit
and receive small amounts of data between the local CPU and the PCI bus. In addition,
each mailbox register can request an interrupt to signal the receipt, or the demand, for more
data.

Mailbox registers are also commonly used to emulate hardware registers in systems
requiring backward register compatibility.

11.1 OVERVIEW

The EPC provides 16 8-bit mailbox registers arranged as contiguous bytes in both the Local
and PCI internal register apertures. Each mailbox register is a dual ported memory, capable
of generating an interrupt request whenever it is read or written from either side. Figure 52
shows a block diagram of the mailbox registers.

11.1.1 Accessing the Mailbox Registers

The mailbox registers are accessed from the Local bus through the Local-to-Internal
Register (LB_IO_BASE) aperture. Typically, LB_IO_BASE is programmed during system
initialization (see “Initialization”).

The mailbox registers are accessed from the PCI bus through the PCI-to-Internal Register
(PCI_IO_BASE) aperture. Alternatively, the mailbox registers can be accessed through PCI
configuration space for the EPC.

The mailbox registers may be accessed as byte, short, word, or multiple word quantities.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 99

Mailbox Registers

Overview
Figure 52: Block Diagram of Mailbox Registers

11.1.2 Doorbell Interrupts

Each of the 16 mailbox registers can generate four different interrupt requests called
doorbell interrupts. Each of these requests can be independently masked for each mailbox
register. The four doorbell interrupt types are:

• Local interrupt request on read from PCI side

• Local interrupt request on write from PCI side

• PCI interrupt request on read from Local side

• PCI interrupt request on write from Local side

The PCI read and Local read interrupts are OR’d together and latched in the mailbox read
interrupt status register (MAIL_RD_STAT). Similarly, the PCI write and Local write interrupts
are OR’d together and latched in the mailbox write interrupt status register
(MAIL_WR_STAT). All of the interrupt request outputs from the status registers are OR’d
together to form a single mailbox unit interrupt request and routed to both the Local and PCI
Interrupt Control Units.

When a block of mailbox registers are accessed simultaneously, for example when 4
mailbox registers are read as a word quantity, then each register affected will request a
separate interrupt if programmed to do so.

16

16

32

32

16

16

16

16

16

16
Read per Byte

Wri te per Byte

PCI Mai lbox R/W Contro ls

16

16
Read per Byte

Wri te per Byte

Local Mai lbox R/W Contro ls

MAIL_WR_STAT

MAIL_RD_STAT

PCI_MAIL_IERD

PCI_MAIL_IEWR

LB_MAIL_IERD

LB_MAIL_IEWR

To PCI ICU
To Local ICU
100 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Mailbox Registers
 Programming the Mailbox Registers
11.2 PROGRAMMING THE MAILBOX REGISTERS

After RESET, interrupt requests for all mailbox registers are disabled. The programmer must
specifically enable interrupt requests for each mailbox register and for each access type.

11.2.1 Enabling Doorbell Interrupt Requests

The four types of doorbell interrupts described above are enabled in four 16-bit registers as
shown in Table 17.

11.2.2 Clearing Doorbell Interrupt Requests

All of the interrupt requests from the 16 mailbox registers are logically OR’d together and
then forwarded to the Local Interrupt Control Unit (LICU) and the PCI Interrupt Control Unit
(see Figure 52). For an interrupt handler to clear the local mailbox/doorbell interrupt request
in the LICU, it must clear all of the enabled local mailbox interrupt requests from the
individual mailbox registers. This is done by clearing the corresponding bit(s) in the
MAIL_RD_STAT and MAIL_WR_STAT registers (by writing a ‘1’), where the mailbox
interrupt requests are latched. Similarly, to clear the PCI mailbox/doorbell interrupt request
in the PICU, it must clear all of the enabled PCI mailbox interrupt requests from the
individual mailbox registers. This is done by clearing the corresponding bit(s) in the
MAIL_RD_STAT and MAIL_WR_STAT registers, where the mailbox interrupt requests are
latched.

Note that MAIL_RD_STAT and MAIL_WR_STAT registers are cleared by writing a ‘1’ into
the bits to be cleared. Writing a ‘0’ will have no effect. Interrupt status bits in the Local
Interrupt Control Unit (LB_ISTAT) and the PCI Interrupt Control Unit (PCI_INT_STAT) are
cleared by clearing the corresponding MAIL_RD_STAT and MAIL_WR_STAT registers.

Table 17: Doorbell Interrupt Types and Corresponding Enable/Mask Registers

ACTION CAUSING INTERRUPT REGISTER

PCI side read PCI_MAIL_IERD

PCI side write PCI_MAIL_IEWR

Local side read LB_MAIL_IERD

Local side write LB_MAIL_IEWR
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 101

Mailbox Registers

Programming the Mailbox Registers
102 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

1

2

3

4

5

6

7

7

8

1

1

12

13

14

15

16

17

18

19

20
9

1

1

Chapter 12 I 2O Interface

12.1 OVERVIEW

As an I2O compatible device, the EPC provides the following required features:

• An I2O compatible “Address Translation Unit” (ATU). This is provided through a PCI
configuration register at offset 0x10 and is called PCI_I2O_BASE.

• At offset 0x40 within the address range of the ATU aperture, an I2O compatible
Inbound FIFO port is provided.

• At offset 0x44 within the address range of the ATU aperture, an I2O compatible
Outbound FIFO port is provided.

• When enabled, a PCI interrupt may be generated whenever an outbound message
has been posted. It is cleared when all outstanding outbound messages have been
read. (This feature is not currently part of the I2O standard 0.96 although it is
implied and will undoubtedly become part of the standard in the future)

12.2 I2O COMPATIBLE ADDRESS TRANSLATION UNIT

The I2O compatible Address Translation Unit (ATU) provides a “window” or “aperture” for an
external PCI agent to access the local bus address space. In this regard it is exactly the
same as the 2 non-I2O compatible PCI-to-Local apertures found on the VxxxPBC. However,
there is one important difference: the I2O ATU has two predefined special registers in its
address range. These are the Inbound/Outbound FIFO registers at offset 0x40 and 0x44 in
the ATU address space. These locations don’t directly map to local address space.
Instead, reads and writes to these locations are managed as curricular queues in local
memory. As far as the ATU is concerned, the relationship of PCI and local address spaces
is depicted in the following diagram:
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 103 21

I2O Interface

I2O Compatible Address Translation Unit
Figure 53: Operation of the I2O Address Translation Function and In/Outbound Free/
Post List Mapping

12.2.1 ATU Setup and Configuration

The I2O compatible ATU is configured through 2 registers:

• PCI_I2O_BASE determines where in PCI system address space the ATU will be
located

• PCI_I2O_MAP determines the size of the ATU aperture and the location of the
aperture within local address space.

12.2.1.1 PCI_I2O_BASE Operation

The PCI_I2O_BASE register provides a standard PCI - I2O compatible Address Translation
Unit. It provides two main functions:

• Access to the I2O inbound/outbound free list and post list FIFOs.

• An aperture into Local Bus address space that translates a PCI address into a local
bus address.

The bottom 4K bytes of the aperture are not translated into local bus address space. In this
4K region only 16 bytes are used (0x30-0x37, 0x40-0x47) for the inbound/outbound
registers. The I2O specification requires no other ports in this 4K space and the remainder
of that space is reserved.

PCI Address Space Local Address Space

Paper tapePaper tape

Aperture into Local
Address Space

reserved

Inbound FIFO Port
Outbound FIFO Port

PCI_I2O_BASE

PCI_I2O_BASE+0x40

PCI_I2O_BASE+0x44

PCI_I2O_BASE+0x1000

Address
Translation

(PCI_I2O_MAP)

Local Address
Space Accessible
from Host Space

4K Bytes Not
Mapped into Host

Space

PCI_I2O_MAP+0x1000

PCI_I2O_MAP

Inbound Post List

Inbound Free List

Outbound Post List

Outbound Free List

Inbound Free Tail

Inbound Post Headreserved

QBA_MAP

Outbound Post Tai l

Outbound Free Head

High Memory Address

Low Memory Address

Outbound Int. MaskOutbound Int.
Status

PCI_I2O_BASE+0x30

PCI_I2O_BASE+0x34
104 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor
Corp.

1

2

3

4

5

6

7

7

8

1

1

12

13

14

15

16

17

18

19

20

I2O Interface
 Inbound/Outbound Queue Management
9

1

1

12.2.2 PCI_I2O_MAP Operation

Local bus memory can be accessed by a PCI master through the PCI_I2O_BASE register.
The base address on the local bus is translated into a local bus address according to the
value in the PCI_I2O_MAP register. This forms the local bus side of the I2O compatible
“Address Translation Unit”. The PCI address is translated into a local bus address in the
following manner:

Local Bus Address = PCI Address - PCI_I2O_BASE Base Address + PCI_I2O_MAP
Address

Where:

PCI Address is within the aperture size defined by the PCI_I2O_MAP register

PCI_I2O_BASE Base Address is on an aperture sized boundary

PCI_I2O_MAP Address is on an aperture sized boundary

12.3 INBOUND/OUTBOUND QUEUE MANAGEMENT

An I2O driver operating on the host or external PCI agent will exchange Message Frame
Addresses (MFA) with the local processor (acting as the Intelligent I/O processor). The
exchange of these MFAs is managed as a circular queue or FIFO (first in first out) storage.
The physical storage of the MFAs is in external memory on the local bus (the I2O
specification itself doesn’t make any assumptions about where the storage is located).
There are 2 pairs of queues provided:

• The inbound free list and post list queues

• The outbound free list and post list queues

For each of the 4 queues in memory data flows in only a single direction: either PCI-to-Local
or Local-to-PCI. The following diagram illustrates the flow of data in and out of these queues
located in local memory.
21Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 105

I2O Interface

Inbound/Outbound Queue Management
Figure 54: In/Outbound Free/Post List Queue Operation

12.3.1 Queue Pointers

A set of pointer registers provide the mechanism for writing and reading local bus memory
so that circular queue operation can be achieved. These registers are now described.

The management of a queue is accomplished with a tail and head pointer. Data is “pushed”
into the FIFO queue at the location pointed to by the Head Pointer. Data is “popped” out of
the FIFO queue at the location pointed to by the Tail Pointer. Pushing or popping causes the

Read

Wri te

Read

Wri te

Read

Wri te

Read

Wri te

Free

Post

Post

Free

Inbound Port

Low Memory Address

High Memory Address

Inbound

List

Inbound

List

Outbound

List

Outbound

List

Outbound Port
External PCI

Agent

External PCI
Agent

OFL_HEAD (incremented by hardware)

OPL_TAIL (incremented by hardware)

IPL_HEAD (incremented by hardware)

IFL_TAIL (incremented by hardware)

Local Bus
Processor

OFL_TAIL (incremented by Local CPU)

OPL_HEAD (incremented by Local CPU)

Local Bus
Processor

IPL_TAIL (incremented by Local CPU)

IFL_HEAD (incremented by Local CPU)
106 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor
Corp.

1

2

3

4

5

6

7

7

8

1

1

12

13

14

15

16

17

18

19

20

I2O Interface
 Inbound/Outbound Queue Management
9

1

1

respective head or tail pointer to be incremented. If pushing or popping is accomplished by
the external PCI agent then the respective pointer is automatically incremented by the EPC.
Pointers that are managed by the local processor are also updated by it under software
control.

It is important to follow an orderly initialization process for the pointers. Typically all the
pointers would be initialized by the local processor. Once the queues have been initialized
and the ONLINE bit in the QBA_MAP register has been set, the local processor will be
unable to modify the contents of any of the pointers controlled by the host driver namely
OFL_HEAD, OPL_TAIL, IPL_HEAD and IFL_TAIL. These are maintained automatically
when the Inbound/Outbound ports are read by the PCI agent as the above table indicates.

12.3.1.1 Pointer Format

Each pointer is a 32 bit address into local memory. Since pointers are always aligned to a
32 bit boundary, the low 2 bits (bits 1-0) are read only (‘0’). The upper 12 bits of the address
(bits 31-20) of all 8 pointers are derived from a single register - the Queue Base Address
register (QBA_MAP) described in the next section. The format of each of the 8 pointer
registers is described in the next diagram:

Figure 55Figure 3 Pointer Register Bit Format

Only 4 of the pointers are automatically incremented by hardware. These are OFL_HEAD,
OPL_TAIL, IPL_HEAD and IFL_TAIL. Incrementing is always done on a modulo boundary
of queue size (queue size is determined by the QBA_MAP register described in the next
section). The pointer format diagram above shows where those modulo boundaries occur
for each of the queue size options. As an example, consider a queue size of 4K entries

Table 18: I2O Queue Pointers

Reg. Name Offset Description Pointer Maintenance

OFL_HEAD 0xBC Outbound Free List Head Pointer PCI write of Outbound Port auto-increments

OFL_TAIL 0xB8 Outbound Free List Tail Pointer Updated by local processor

OPL_HEAD 0xB4 Outbound Post List Head Pointer Updated by local processor

OPL_TAIL 0xB0 Outbound Post List Tail Pointer PCI read of Outbound Port auto-increments

IPL_HEAD 0xAC Inbound Post List Head Pointer PCI write of Inbound Port auto-increments

IPL_TAIL 0xA8 Inbound Post List Tail Pointer Updated by local processor

IFL_HEAD 0xA4 Inbound Free List Head Pointer Updated by local processor

IFL_TAIL 0xA0 Inbound Free List Tail Pointer PCI read of Inbound Port auto-increments

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QBA_MAP b i ts 31-20 (read on ly) Read/Wr i te B i ts

Auto Incremented fo r QSIZE=4

Auto Incremented fo r QSIZE=3

Auto Incremented fo r QSIZE=2

Auto Incremented fo r QSIZE=1

Auto Incremented fo r QSIZE=0
21Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 107

I2O Interface

PCI I2O Interrupt Registers
(QSIZE=0) which translates to 16K bytes. Pointers are incremented in the following way:

New Pointer = (Old Pointer + 4 bytes) & 0x3FFC

Where the “&” symbol represents the bitwise AND operation

The bitwise AND with 0x3FFC (16K-4) represents the wrapping of the pointer at the modulo
boundary of queue size.

12.3.2 QBA_MAP Register: Locating the Queue in Local
Memory

All 8 of the head/tail pointers are located within the same 1M byte region of local memory.
This region is selected by programming the QBA_MAP register. The QBA_MAP register
also determines the sizes of the 4 queues (all 4 queues must be of the same size).

12.3.3 PCI Inbound/Outbound Port Read/Write Cycles

When the Inbound/Outbound queue ports are accessed by a PCI agent, the PCI cycle looks
like any normal access to an aperture (or ATU) with the following exceptions:

• Access to the Inbound/Outbound queue ports at offset 0x40 and 0x44 cannot be
bursted. If a burst is attempted to these locations then the EPC will do a “Disconnect
- B” (see PCI Specification) where STOP# is asserted with TRDY# to turn the burst
into a single cycle.

• Reads of the Inbound/Outbound queue ports are never prefetched regardless of the
state of the PREFETCH bit in the PCI_I2O_BASE register.

• Each PCI read/write operation to the Inbound/Outbound queue ports is translated
into an equivalent read/write cycle on the local bus (as an access to the ATU would
do) except that the address is derived from the head/tail pointers instead of the PCI
address in combination with the PCI_I2O_MAP value.

• if the value of IFL_TAIL is equal to IFL_HEAD then a read of the inbound free list port
will return 0xFFFFFFFF and no read cycle is performed on the local bus.

• if the value of OPL_TAIL is equal to OPL_HEAD then a read of the outbound post list
port will return 0xFFFFFFFF and no read cycle is performed on the local bus.

• if the I2O “ONLINE” bit in QBA_MAP isn’t enabled then no local bus cycles will be
performed in response to an access to the inbound/outbound ports. Read
operations will return 0xFFFFFFFF. The outbound post interrupt is also disabled.

12.4 PCI I2O INTERRUPT REGISTERS

I2O requires that a maskable PCI interrupt be generated to the selected interrupt pin
108 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor
Corp.

1

2

3

4

5

6

7

7

8

1

1

12

13

14

15

16

17

18

19

20

I2O Interface
 Enabling I2O Operation
9

1

1

whenever the outbound post list is not empty. The status register is mapped into offset 0x30
in the ATU PCI address space (as determined by PCI_I2O_BASE) and the mask register
adjacent to it at offset 0x34. These are 32 bit registers when accessed from the I2O ATU
with only a single bit defined in the lowest byte. The same register can also be accessed
from the standard PCI and local bus internal register apertures in the same manner as any
other internal register. However, the registers are defined as 8 bit in these cases.

12.4.1 I2O Ready Interrupt

The I2O specification requires that if interrupts are to be used then an interrupt mask and
status register are to be provided at offsets 0x34 and 0x30 in the base address region
allocated to BAR0 (configuration space offset 0x10: PCI_I2O_BASE). These registers are
provided by aliasing the OUT_POST bits of

12.5 ENABLING I 2O OPERATION

The EPC is configured for I2O operation by setting the I2O_EN bit in the PCI_CFG register.
When configured for I2O operation, some of the VxxxPBC internal operations change:

• PCI_IO_BASE register is re-located to offset 0x18 (0x10 is the default)

• PCI_BASE1 and PCI_MAP1 are disabled

• PCI_I2O_BASE is enabled at offset 0x10 in the PBC internal register space.

PCI_I2O_IMASK (offset 0x34)
Bits Mnemonic Type Reset Description
31-4 - R 0H reserved

3 OUT_POST FRW 0H

Outbound Post Mask: when clear (0) the interrupt pin 0 is driven
whenever the outbound post FIFO is not empty. Setting this mask
bit disables the physical interrupt pin from being driven but has no
effect on the corresponding status bit in PCI_I2O_ISTAT. This bit
is aliased to the OUT_POST bit in PCI_INT_CFG except in the
opposite polarity (’1’ = enabled in PCI_INT_CFG whereas ’0’ =
enabled in PCI_I2O_MASK). Changes to PCI_I2O_MASK bit 3
will also be reflected in PCI_INT_CFG.

2-0 - R 0H reserved

PCI_I2O_ISTAT (offset 0x30)
Bits Mnemonic Type Reset Description
31-4 - R 0H reserved

3 OUT_POST FRW 0H

Outbound Post Status: set (1) whenever the outbound post FIFO
is not empty. Cleared when the outbound post FIFO is empty
again. The state of the corresponding mask bit has no effect on
this status bit. This bit is aliased to the OUT_POST bit in
PCI_INT_STAT.

2-0 - R 0H reserved
21Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 109

I2O Interface

Enabling I2O Operation
• PCI_I2O_MAP is enabled at offset 0x44 in the PBC internal register space.

• PCI_BASE0 must be disabled (via PCI_MAP0) as it is used to control some aspects
of the in/outbound queue operation.

There are also a set of registers that are dedicated for I2O operation. Normally they wouldn’t
be used if I2O operation isn’t enabled (although the registers are accessible even when I2O
is disabled).

• OFL_HEAD: Outbound Free List Head Pointer

• OFL_TAIL: Outbound Free List Tail Pointer

• OPL_HEAD: Outbound Post List Head Pointer

• OPL_TAIL: Outbound Post List Tail Pointer

• IPL_HEAD: Inbound Post List Head Pointer

• IPL_TAIL: Inbound Post List Tail Pointer

• IFL_HEAD: Inbound Free List Head Pointer

• IFL_TAIL: Inbound Free List Tail Pointer
110 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor
Corp.

Chapter 13 Interrupt Control

The EPC includes two Interrupt Control Units (ICUs): one to process interrupt requests
bound for the local CPU, and one to process interrupt requests to and from the PCI bus. The
two Interrupt Control Units are connected to allow the routing of interrupt requests from PCI
to the Local bus, as well as from the Local bus to PCI.

The PCI Interrupt Control Unit (PICU) also includes a special crosspoint interrupt routing
mechanism for the four PCI interrupt requests (INTA through INTD). Each of the four PCI
interrupts can function as either an input or an output, and interrupt requests may be passed
from any PCI interrupt to any other PCI interrupt. PCI interrupt acknowledge cycles can also
be generated by the EPC when acting as a host bridge.

13.1 LOCAL INTERRUPT CONTROL UNIT

The Local Interrupt Control Unit (LICU) process interrupts from the following sources:

• PCI read and write exceptions

• DMA chain completion

• Mailbox register access (“doorbell” interrupt)

• PCI Interrupt pin events

13.1.1 Overview

The LICU consists of an interrupt status register (LB_ISTAT) and an interrupt mask register
(LB_IMASK) as shown in Figure 56. Interrupt requests from the individual sources are
posted in the interrupt status register. The interrupt mask register controls which of the
interrupt requests posted in the request register actually generate an interrupt request to the
local processor, and optionally, the PCI Interrupt Control Unit.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 111

Interrupt Control

Local Interrupt Control Unit
Figure 56 : Local Interrupt Control Unit Block Diagram

13.1.2 Local Interrupt Requests

The following local interrupt requests are physically latched within the LB_ISTAT register:

• "PCI_RD", "PCI_WR" bits: PCI Read and Write Error Interrupts

• "DMA0", "DMA1" bits: DMA Channels 0 and 1 Interrupts

• "MAILBOX" bit: Mailbox interrupt requests1

The above interrupt requests are cleared by clearing (0) the corresponding bits in the
LB_ISTAT register.

The following local interrupts are not latched within the LB_ISTAT register:

• "PCI_INT" bit: PCI interrupt control unit requests

Non-latched interrupt requests are only cleared when the source of the corresponding
interrupt request is cleared. For example, the PCI_INT request is only cleared when all
enabled PCI interrupt inputs are de-asserted.

13.1.3 Masking Local Interrupt Requests

Local interrupt requests can be masked (disabled) by clearing the corresponding bit in the
LB_IMASK register. The interrupt mask register controls (enables) which of the interrupt
requests posted in the request register actually generate an interrupt request.

13.1.4 Local Interrupt Event Signal

The LICU has a single output signal that is the logical OR of all unmasked interrupt requests.

1. The MAILBOX bit is not latched in silicon revision B2 or later.

Mailbox IRQ
(OR of all Mailbox IRQs)

PCI IRQ (from PICU)
(OR of all PCI INTx IRQs)

PCI Read IRQ
(PCI Read Failure)

PCI Write IRQ
(PCI Write Failure)

DMA Channel 1 IRQ
(DMA Channel 1 Chain Done)

DMA Channel 0 IRQ
(DMA Channel 0 Chain Done)

Local Interrupt
Status

Register
(LB_ISTAT)

Local Interrupt
Request Mask

Register
(LB_IMASK)

Logical O
R To LINT Pin

Local Interrupt
Event Signal
112 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Interrupt Control
 PCI Interrupt Control Unit (PICU)
This signal is routed to the local processor interrupt pin (LINT) and to the PCI Interrupt
Control Unit. The activation of the LICU output signal in response to an interrupt is called a
local interrupt event.

13.2 PCI INTERRUPT CONTROL UNIT (PICU)

The PCI Interrupt Control Unit (PICU) process interrupts from the following sources:

• DMA Chain Completion
• Mailbox Register Access (“Doorbell” interrupt)
• Local bus direct software interrupts
• Interrupt requests from the INTA, INTB, INTC, and INTD PCI interrupt request pins

(when configured as inputs)

13.2.1 Overview

The PICU is significantly more complex than the LICU, as shown in Figure 58. The interrupt
crosspoint mechanism allows for maximum system design flexibility for embedded systems
using multiple PCI interrupts. In addition, control is provided for both receiving and
requesting interrupts on any of the four PCI interrupt pins.

Figure 57: PCI Interrupt Control Unit Block Diagram

INTA#
PCI INTA#

PIN CONTROL

PCI INTB#
PIN CONTROL

INTB#

PCI INTC#
PIN CONTROL

INTC#

PCI INTD#
PIN CONTROL

INTD#

PCI Interrupt
Status Register

(PCI_INT_STAT)

Mai lbox IRQ
(OR of al l mailbox IRQs)

DMA 0 IRQ
(DMA channel 0 chain complete)

DMA 1 IRQ
(DMA channel 1 chain complete)

Local CPU Software IRQ
(set LOCAL bit in
PCI_INT_STAT)

PCI Interrupt
Pins

CROSSPOINT
INTERRUPT

ROUTING BUS

PCI Control Unit Event
(to Local ICU)
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 113

Interrupt Control

PCI Interrupt Control Unit (PICU)
13.2.2 PCI Interrupt Pins (INTA through INTD)

The PCI Specification provides for four shared PCI interrupt request pins: INTA through
INTD. Typically, these interrupts are driven by the target devices in a system and received
by the host bridge device. Since the EPC can be used as either a host or target bridge, the
capability is provided to either receive interrupts or drive interrupt requests on the INTA
through INTD pins.

13.2.2.1 Configuring a PCI Interrupt Pin as an Interrupt Request
Output

Any of the INTx pins can be configured as an output pin. However, only one of the INTx pins
can be designated as the destination for mailbox, local direct, and DMA interrupt requests
(chosen by the INT_PIN field in the PCI_BPARAM register). The remaining INTx outputs
can be programmed to reflect the state of other INTx pins configured as inputs (see
Crosspoint Routing Mechanism, below).

The direction of the INTx pins is set via the MODEx fields in the PCI Interrupt Configuration
register (PCI_INT_CFG). Pins configured as outputs are always active low and are software
cleared. Software cleared outputs will go inactive when the corresponding bit in the
PCI_INT_STAT register is cleared.

13.2.2.2 Configuring a PCI Interrupt Pin as an Interrupt Request
Input

Any of the INTx pins may be configured as inputs. The direction and detection mechanism
for INTx pins is controlled by the MODEx field in the PCI_INT_CFG register. INTx inputs
may be either edge or level sensitive. Edge sensitive pins will generate an interrupt event
when a high-to-low transition is seen on the pin. Level triggered inputs will generate an
interrupt event whenever the state of the INTx pin is low. (Note that level triggered inputs will
generate another interrupt event if a previous request is cleared AND the corresponding
INTx pin is still at a logic “0”.)

PCI interrupt inputs will post interrupt requests in the PCI_INT_STAT register only when they
are routed to a PCI interrupt output through the crosspoint routing mechanism (see below).

13.2.2.3 Crosspoint Interrupt Routing Mechanism

Many embedded designs will require the ability to control multiple PCI interrupt input and
output events. The EPC’s crosspoint interrupt routing mechanism allows for extremely
flexible interrupt request routing between the four interrupt pins.

For example, consider the case of an expandable network router using PCI as the
backplane. In such a system there may be no single “host processor”. Each plug in board
may act as a host processor from time to time, and will need the ability to both receive
interrupt requests as well as post them. It would be nice if such a system could be designed
to be “plug and play”, so that when a new board was added, it automatically configured
some of its interrupts as inputs, and some as outputs dynamically. The interrupt crosspoint
routing mechanism allows the system designer to do just that.
114 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Interrupt Control
 PCI Interrupt Control Unit (PICU)
Figure 58 shows the details of the crosspoint routing mechanism. Each INTx pin is capable
of generating a PCI interrupt event, which is in turn routed to all of the other INTx pin control
circuits. When an INTx pin is configured as an output, it can be driven internally from either
one or more of the other 3 INTx pin interrupt events, or from the combination of the mailbox,
DMA, and local direct source.

The routing of interrupts is controlled through the INTx_TO_y bits in the PCI_INT_CFG
register. For example, if the INTA_TO_D bit is set and INTA is configured as an input pin and
INTD is configured as an output, then when INTA is active INTD will go low to request an
interrupt on the PCI bus.

The individual INTx interrupt requests may also be routed to the Local Interrupt Control Unit.
Each pin has an associated INTx_TO_LB bit that selects it as an input to the LICU. All PCI
interrupt pin requests are OR’d before presentation to the LICU (see Figure 58).

PCI interrupt configuration is shown in more detail in the programming example below.

Figure 58: Interrupt Crosspoint Routing Mechanism

13.2.3 Internal PCI Interrupt Requests

In addition to the INTx pins, the PICU can also respond to request from the mailbox
registers, the DMA controller, and the local CPU. This group of PCI interrupt request sources
is called internal PCI interrupt requests to differentiate them from the INTx pins.

13.2.3.1 Mailbox and DMA PCI Interrupt Requests

Like the local Interrupt Control Unit, the PCI Interrupt Control Unit can receive interrupt
requests from both the mailbox registers and the DMA controller. Also like the LICU, the
PICU latches the DMA interrupt requests and does not latch the mailbox interrupt request.

INTD
Event

MODE = "10",
"11"

or
INT_PIN="100"

PCI_INT_CFG
PCI_INT_STAT

INTC Event
INTB Event
INTA Event

(from other 3 pins)

(to other 3 pins)

In ter rupts From MBOX, DMA, LOCAL
(enabled from INT_PIN f ie ld in PCI_BPARAM Reg.)

INTD

INTC

INTD

INTB

INTA

INTC_TO_D

INTB_TO_D

INTA_TO_D

INTD_TO_LB

INTC_TO_D

INTB_TO_D

INTA_TO_D

MODE = 01

MODE = 00

Edge
Detect

To Local Bus ICU
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 115

Interrupt Control

PCI Interrupt Control Unit (PICU)
Clearing the DMA interrupt requests is achieved by writing "1" to the corresponding bit in the
PCI_INT_STAT register. Note that clearing a DMA interrupt request in PCI_INT_STAT has
no affect on the DMA interrupt request bits in the LB_STAT register.

Mailbox interrupt requests are only cleared by clearing the individual mailbox interrupt
requests in the mailbox register unit.

13.2.3.2 Local Direct Interrupt Request

The Local processor may request a PCI interrupt by setting the LOCAL bit in the
PCI_INT_STAT register. The LOCAL bit can be cleared from the PCI or Local side of the
bridge.

13.2.3.3 Routing the Internal PCI Interrupt Requests to an INTx
Pin

Only one INTx pin can be the destination for internal PCI interrupts. The specific pin is
determined by programming the INT_PIN field in the PCI_BPARAM register. The pin used
for this purpose may also be used as the destination for crosspoint routed INTx interrupts.

13.2.4 PICU Configuration Example

An example may be helpful in describing the operation of the PCI Interrupt Control Unit.
Figure 59 shows a system block diagram for the following example. The interrupt pin usage
is detailed in Table 19.

First, we’ll need to mask DMA and mailbox interrupts from appearing on the INTC pin when
we “turn it on” as an output (this will prevent spurious interrupts from occurring). These
interrupts are disabled by clearing the MAILBOX and DMA0/1 bits in the PCI_INT_CFG
register.

The next step is to configure INTD and INTC as outputs. This is done by setting the
appropriate mode in the MODED and MODEC fields in the PCI_INT_CFG register. We’ll
choose “software cleared” for both (MODEx=10). Since INTC needs to be able to drive the
local direct interrupt onto the PCI bus, we must also set INT_PIN field in the PCI_BPARAM
register to “011” (this sets INTC as the “receiver” for internal PCI interrupts). Because all of
the PCI interrupts are open drain (by PCI definition), we’ll need to make sure the hardware
guys put a pullup resister on the INTD pin that’s used as a local interrupt (it’s not on the
block diagram).

Finally, we need to configure the INTA and INTB pins as inputs to INTD (the PCI interrupt
routing request pin). This is done by setting the INTA_TO_D and INTB_TO_D bits in the
PCI_INT_CFG register. Configuration is now complete.
116 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Interrupt Control
 Generating PCI Interrupt Acknowledge Cycles
Figure 59: System Block Diagram for PCI Interrupt Control Unit

13.3 GENERATING PCI INTERRUPT ACKNOWLEDGE CYCLES

Generating PCI interrupt acknowledge cycles is straightforward with the EPC:

• Set the TYPE field in one of the LB_MAPx registers to “Interrupt Acknowledge”.

• Turn off prefetching for the corresponding aperture by clearing the PREFETCH bit in
the LB_BASEx register.

• Perform a single word read access to the aperture. The data returned will be the
interrupt vector.

Table 19: Example PCI Interrupt Usage

Interrupt Pin Use

LINT Tied to one of the local CPU’s interrupt input pins. Signals Local interrupt
requests, including PCI errors (very high priority).

INTD Also tied to one of the local CPU’s interrupt input pins. This pin is configured
as an output and forwards PCI interrupt requests from the INTA and INTB pins
to the local CPU (medium priority).

INTC Configured as an output, INTC is used to signal local direct processor
requests to other subsystems in the PCI bus.

INTA and INTB Generic PCI interrupt inputs from target subsystems.

LOCAL PROCESSOR PBC
(V3 CORP.)

LOCAL BUS
P

C
I

B
U

S

L INT#

INTD#

INTA#

INTB#

INTC#
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 117

Interrupt Control

Generating PCI Interrupt Acknowledge Cycles
118 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 14 Initialization

Initialization of the EPC usually occurs when the system is reset. The EPC can be reset
either from the PCI bus or from the local bus. Following a reset, the EPC’s internal registers
can be initialized via the PCI bus, the local bus, or the serial EEPROM interface. Internal
registers can be modified after reset from the PCI bus (memory, I/O, or configuration space)
or from the local bus. This chapter describes reset options and register initialization
procedures.

14.1 RESET DIRECTION

The EPC device is reset by driving active either the LRST pin (for resetting from the local
bus) or PRST pin (for resetting from the PCI bus). Which pin is used as the EPC reset input
is controlled by the RDIR pin.

The EPC is also capable of generating reset for either the local or the PCI bus. For systems
using the EPC as the PCI system master bridge, PCI reset is typically driven by the EPC.
Systems using the EPC as a target bridge will typically receive reset via the PCI bus, and
reset the host processor in turn. Figure 60 shows examples of both reset directions.

Eight clock cycles are required for both the PCI and local bus following the rising edge of
reset before attempting to access the internal registers. This eight clock delay is necessary
to allow the internal operations of the EPC to achieve an idle state.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 119

Initialization

Reset Direction
Figure 60: Reset Direction Examples

EPC

Target Target

PRST PRST

PRST

PCI Bus

RDIR

CPU

LOCAL
RESET
CIRCUIT

EPC Acting as PCI System Master Bridge: Reset Flows From Local Reset Circuit To PCI Bus.

EPC

PRST
PCI Bus

RDIR

CPU

Target devices/Add-in cards

CPU and EPC are PCI target / add-in card

PCI System
Configuration

Master
(i.e. x86 Host
Bridge Chip)

PRST

Vcc

PCI Configuration Master
Generates PCI system reset.

Generate PCI system reset.

EPC Acting as PCI Target Bridge: Reset Flows From PCI Bus To Local CPU Bus.

PCI Configuration Master and
CPU and EPC are the LRST

LRST
120 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Initialization
 Reset Direction
The reset used as output remains asserted until the input Reset has been de-asserted and
the RST_OUT bit in the SYSTEM register has been written “1”. The RST_OUT bit can be
written ‘0’ later to cause the output Reset to be asserted again (software controlled Reset).

The following diagram illustrates how the EPC reset operation works with the RDIR pin tied
high. In this mode the PCI bus provides the reset input via PRST. This PRST input is
processed to produce a local Reset output LRST.

In many systems, it will be desirable to un-reset the local bus after the PCI bus has been
released from reset. This is accomplished automatically by programming the serial
EEPROM with bit 7 set in byte 79H (this is the RST_OUT bit in the SYSTEM register).

Figure 61: Reset Operation when RDIR = 1

By tying the RDIR pin low, the Reset direction can be configured to drive out the PCI reset
and use LRST as an input.

Table 20: RESET Direction Options

RDIR Pin
 State

Direction LRESET PRST Comments

0 Local to PCI Input Output PRST is deasserted by writing the RST_OUT bit in
the SYSTEM register

1 PCI to Local Output Input LRST is deasserted by writing the RST_OUT bit in
the SYSTEM register

Digital
Gl i tch

Reject ion
P R S T D Q L R S T

L C L KRST_OUT B i t i n
t h e S Y S T E M

Regis ter

Clear

Can be se t /c leared f rom EEPROM, PCI
conf igurat ion space, PCI IO/memory

space and loca l memory space

RDIR='1 '
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 121

Initialization

Initializing the Internal Registers
Figure 62: Reset Operation when RDIR = 0

14.2 INITIALIZING THE INTERNAL REGISTERS

There are three options for initializing the EPC internal registers set after reset:

• Initialization from the local bus side (through the aperture defined by the
LB_IO_BASE register)

• Initialization from the PCI bus side via configuration space

• Initialization from the serial EEPROM interface

14.2.1 Selecting Initialization Mode

There are 3 initalization modes that can be selected to control the operational of the
EEPROM controller during initalization (see Table 21).

Table 21: EEPROM Initalization Options

EEPROM Port
Connection

RETRY_EN RST_OUT Comment

SDA pulled high,
No EEPROM

1 1 Typically used for initalization via local
processor

SDA Tied Low, No
EEPROM

0 0 Typically used for initalization via PCI

SDAa and SCL
connected to valid
EEPROM device

a.SDA should have a pull up resistor in order to function properly with an EEPROM device

From
EEPROM

From
EEPROM

Initalization from EEPROM

Digital
Glitch

Reject ion
LRSTDQP R S T

PCLK RST_OUT Bi t in
the SYSTEM

Register

Clear

RDIR='0 '
122 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Initialization
 Initializing the Internal Registers
After the input reset has been released, 10 SCL clocks are performed followed by a STOP
cycle to ensure that a re-reset didn’t falsley see the SDA signal low.

14.2.2 Initialization Using the Local Processor

In applications where the EPC is a secondary master it may be desirable to use the local
processor to initialize the contents of the internal registers of the EPC and save the cost of
the serial EEPROM device. This is best accomplished by pulling the SDA pin high on the
EPC and using PRST# as an input. The processor can be connected as in Figure 63.

Figure 63: Connection for Initialization Using the Local Processor

When connected as in Figure 63, the RETRY_EN bit of the PCI_CFG register will be set
when PRST# is asserted and remain that way until the local CPU clears it. RETRY_EN is
used to cause a PCI configuration access to the EPC to get retried until it is cleared from the
local CPU. This ensures that the local bus CPU gets a chance to properly initialize before
the PCI BIOS tries to enumerate the EPC. Once the local CPU has initalized the internal
registers then RETRY_EN can be cleared to allow the primary PCI master to enumerate the
EPC. Since the RETRY_EN bit is type FR (locked) the sequence that software should use
is: write RETRY_EN with ’0’ immediately followed with writing the LOCK bit with ’1’ in the
SYSTEM register.

Access to the internal registers from the local bus side is through the “local bus-to-internal
register” aperture defined by the LB_IO_BASE register. LB_IO_BASE is a sixteen bit
register which defines a field that is compared with address bits A[31:16] for every access
seen on the local bus. When there is a match between LB_IO_BASE and A[31:16], that
access is “claimed” by the EPC and is considered to be to an access to the internal
registers. The local-to-internal register aperture has a granularity of 64Kbytes (since only
A[31:16] are compared) even though only the first 256 bytes are used. The remaining space
is reserved.

As an example, let’s assume LB_IO_BASE is programmed to the value 1234H. To read the
PCI_CC_REV register (offset 08H) you would perform a word read from location
1234.0008H in local memory. Care must be taken when using big-endian processors (or big-
endian regions with little-endian processors) to generate the proper addresses, as
configuration space is little-endian (by PCI definition).

In order for the LB_IO_BASE decoder to respond to a local bus cycle at the desired memory
location, it must be configured. There are 3 ways to do this:

PRST# PRST LRST

S D A

V350EPC/V360EPC CPU

R E S E T
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 123

Initialization

Initializing the Internal Registers
• LB_IO_BASE can be downloaded from the serial EEPROM device

• LB_IO_BASE can be configured from the PCI bus through configuration space or
through the PCI_IO_BASE register

• LB_IO_BASE can be configured by the local processor by capturing the first write
cycle on the local bus

After RESET, the local bus interface on the EPC will respond to any write cycle it sees on the
bus until the LB_IO_BASE register is written (regardless of how it is written). Therefore, if
the serial EEPROM download is enabled, then the contents of LB_IO_BASE is established
in this way and the EPC will only respond to addresses in the range determined by
LB_IO_BASE. The same is true of initialization from the PCI bus.

If initialization of LB_IO_BASE is to be performed by the local processor then it should be
done as the first (or one of the first) write cycle. The address should be xxxx.006Ch1 where
xxxx is the base address that internal EPC registers are to be mapped in local space. The
data for the write should also be the base address (this is the data that will actually be
written into the register). If the first write is NOT to location xxxx.006Ch then the EPC will
also claim the access and write one of the internal registers (the low address determines
which register is selected). When xxxx.006Ch is eventually written then the EPC will only
respond at the location determined by the value loaded into LB_IO_BASE. For the
V960EPC with it’s 16 bit bus, LB_IO_BASE is initialized with a single write to xxxx.006Eh
which is the upper (and only significant) part of the LB_IO_BASE register. In summary, when
the EPC is initialized by the local bus processor (as opposed to PCI bus or serial EEPROM):

• The EPC will capture all write cycles on the local bus until the LB_IO_BASE register
(at offset 6Ch) is written by something (the Serial EEPROM, PCI bus or local bus
processor)

• Writes to addresses other than xxxx.006Ch will also be captured by the EPC.

• All cycles that the EPC captures will generate a “data ready” to acknowledge the
transfer

Once the LB_IO_BASE register is set, the remaining internal registers are programmed by
writing to the corresponding memory mapped locations. Burst reads and writes are
permitted to internal registers.

All PCI and local bus functions are disabled following a hardware reset. For example, all PCI
accesses are ignored by the EPC until enabled by the programmer (with the exception of
PCI configuration cycles as described below).

1. The LB_IO_BASE register is in the upper 16 bits for a 32-bit write. Address 6Eh should be used for a
16-bit write using a little endian processor.
124 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Initialization
 Initializing the Internal Registers
.

14.2.2.1 i960 Processor Configuration Note

In order for the V96xEPC to interact correctly with the i960 family of processors, the
following processors parameters should be used:

• Burst - Enable
• External Ready - Enable
• Pipelining - Disable
• NRAD - 0
• NRDD - 0
• NWAD - 0
• NWDD - 0
• NXDA - 0
• Bus Width - 32 Bits

14.2.3 Initialization Using the PCI Configuration Space

The EPC can be initialized from the PCI bus by a PCI system master via configuration space
accesses. Typically, this type of configuration would be used in systems using the EPC as a
target bridge for a PCI add-in card.

Access to the configuration space of the EPC from the PCI bus is achieved by asserting the
EPC’s IDSEL pin. With IDSEL active, PCI transfers in the address range 0-FFH will be
forwarded to the internal configuration registers. The EPC ignores Type 1 configuration
accesses (PCI to PCI bridge configuration cycles).

Table 22: Local Bus Signals for LB_IO_BASE Configuration after RESET

CPU

READ/
WRITE

 SIGNAL

BE3 /
BWE3

BE2 /
BWE2

BE1 /
BWE1

BE0 /
BWE0 ADDRESS DATA

i960Jx
i960Cx
i960Hx

WRITE 0 0 0 0 xxxx.006CH D[31:16] = LB_IO_BASE
D[15:0] = 006CH

i960SA WRITE NA NA 0 0 xxxx.006EH
xxxx.006CH

D[15:0] = LB_IO_BASE
D[15:0] = 006CH
(2 cycles)

Am2903x
Am2904x

WRITE 0 0 0 0 xxxx.006CH D[31:16] = LB_IO_BASE
D[15:0] = 006CH
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 125

Initialization

Initializing the Internal Registers
14.2.4 Initialization Using the Serial EEPROM interface

The EPC registers can also be initialized using the serial EEPROM interface. When using
this method, the EPC “downloads” the values for the first half of the 256-byte internal
register block from a serial EEPROM connected to the SCL and SDA pins. All register bits of
type “FRW” or “FR” for configuration registers from 00H to 7FH are written by the serial
EEPROM. Only bits of type “R” cannot be written.

Serial EEPROM initialization is useful in the following situations:

• Systems without a local processor that are using the EPC as a stand alone bridge

• Systems that cannot guarantee that the EPC can be initialized in a timely fashion by
the local processor

• Systems which wish to eliminate an additional variable (e.g. during software debug)

The EPC uses a I2C-like interface to download from the serial EEPROM. The interface is
designed to work with 24C02 style serial EEPROMs. Table 23 shows serial EEPROMs
known to be compatible with this interface.

When the reset input (LRESET or PRST, as selected by RDIR) is de-asserted, the SDA pin
is sampled at the rising edge of the reset input. If a serial PROM is present, the SDA pin will
be pulled high by the external pull up resistor. The detection of a high signal on SDA at the
rising edge of the reset input begins the serial download. Each byte is read from the
EEPROM sequentially, starting from 0H and ending at 7FH.

NOTE: To prevent serial initialization for systems initializing from the PCI or local bus, YOU
MUST TIE SDA TO GROUND through a 1-2.2K ohm resistor. See Figure 64 for example
circuits.

14.2.4.1 Programming the Serial EEPROM

Programming of the serial EEPROM is straightforward on most commercial EPROM
programmers. Each byte in the 128-byte EEPROM is programmed with the value desired in
the corresponding byte in the EPC’s register map. Unused registers should be programmed
with 0H.

The EPC may be used to program the EEPROM in the target application. Direct control over
the state of the SCL and SDA pins is available through the SYSTEM register. The system
programmer must provide the proper signal timing for the serial EEPROM through software
emulation of the I2C-like protocol. Examples of source code for programming the I2C
protocol can be found on the World Wide Web by searching for I2C using one of the internet
search engines.

Table 23: Serial EEPROMs Known Compatible with the EPC

Manufacturer Device

Atmel 24C02

Microchip 24C02A

Xicor X24C02
126 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Initialization
 Initializing the Internal Registers
ApNote: If the VENDOR ID and DEVICE ID fields are programmed to FFFFH (an illegal
value) in the EEPROM, the EPC will ignore these values and leave the default power on
values in these registers.

14.2.4.2 Timing Considerations when Initializing via the Serial
EEPROM

The download of the serial EEPROM data takes a considerable amount of time. Each byte
of data requires 9 SCL cycles at 512 PCI clocks per cycle. There is additional set-up
overhead of approximately 5 data bytes (for serial EEPROM setup). The timing for a full
download is:

(512 PCI clocks) x (133 bytes) x (9 SCL’s per byte) = 613,000 PCI clocks

Access from PCI will cause Retry until the download is done.

Figure 64: Serial EEPROM Initialization Schematics

EPC

SCL

SDA

24C02

SDA

SCL

Vcc

2.2K

EPC

SCL

SDA

Vss

2.2K

Serial EEPROM Initialization Circuit

Circuit to DISABLE Serial EEPROM Initialization

TEST

A2

A1

A0

VSS
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 127

Initialization

Initializing the Internal Registers
14.2.5 Re-Initialization Using the PCI I/O or Memory Space

The EPC’s internal registers may also be accessed via the PCI-to-Internal register aperture.
The base address for this aperture is controlled by the PCI_IO_BASE register. This method
can not be used to initialize the EPC immediately following a RESET (unless a serial
EEPROM is used) because PCI memory reads and writes are ignored following RESET until
one or both of the MEM_EN and IO_EN bits in the PCI_CMD register are set (’1’) and the
PCI_IO_BASE register base address has been established.
128 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Chapter 15 Re gister Descriptions

The registers for the EPC are broken into 6 basic groups: System, PCI Configuration and
Control, Local Configuration and Control, FIFO Configuration, DMA Control, and Mailbox
Registers. This chapter will describe the location and attributes of the registers;
programming details for each register are given in the appropriate chapters.

Each bit in the EPC registers is readable and writable according to one of the following
designations. Those marked with an asterisk (*) apply to the PCI Configuration Registers
only and comply with the PCI specification to provide the required PCI configuration header.

R: Read only - bits are internally driven and cannot be modified.

FR*: Firmware Initialized, Configuration Read Only - these bits are initialized after a
system reset by downloading via the serial EEPROM device or by the local bus master.
Once "FR" bits are loaded they may be locked from further modification by setting the LOCK
bit in the SYSTEM register.

W: Write only. Typically used to issue commands.

FRW*: Firmware Initialized, Configuration Read/Write - Initialized at boot-time but can be
both read or written from the PCI and Local buses.

RW: Read and Write.

All reserved register bits read back as zeros.

The PCI configuration registers required by the PCI Spec are described in the PCI
Configuration Registers section below.

15.1 REGISTER MAP

Figure 65 shows the internal register map for the EPC. The offsets shown are relative to the
base address of the aperture from which the registers are accessed:

• LB_IO_BASE for accesses from the local bus

• PCI_IO_BASE for memory or I/O accesses from the PCI bus

• 0H in configuration space for configuration accesses from the PCI bus
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 129

Register Descriptions

Register Map
Figure 65 : Register Map

REGISTER OFFSET
31 1615 0

PCI_DEVICE PCI_VENDOR 00H
PCI_STAT PCI_CMD 04H

PCI_CC_REV 08H
PCI_HDR_CFG 0CH

PCI_IO_BASE (PCI_I20_BASE when I20 operation is enabled: I20_EN bit) 10H
PCI_BASE0 14H
PCI_BASE1 18H

reserved 1C-2BH
PCI_SUB_ID PCI_SUB_VENDOR 2CH

PCI-ROM 30H
reserved 34-38H

PCI_BPARAM 3CH
PCI_MAP0 40H

PCI_MAP1 (PCI_I20_MAPa when I20 operation is enabled: I20_EN bit) 44H
PCI_INT_STAT 48H
PCI_INT_CFG 4CH

reserved 50H
LB_BASE0 54H
LB_BASE1 58H

LB_MAP0 reserved 5CH
LB_MAP1 reserved 60H
LB_MAP2 LB_BASE2 64H

LB_SIZEb 68H

LB_IO_BASE reserved 6CH
FIFO_PRIORITY FIFO_CFG 70H

LB_IMASK LB_ISTAT FIFO_STAT 74H
LB_CFG SYSTEM 78H
reserved PCI_CFG 7CH

DMA_PCI_ADDR0 80H
DMA_LOCAL_ADDR0 84H

DMA_CSR0 DMA_LENGTH0 88H
DMA_CTLB_ADR0 8CH
DMA_PCI_ADDR1 90H

DMA_LOCAL_ADDR1 94H
DMA_CSR1 DMA_LENGTH1 98H

DMA_CTLB_ADR1 9CH
I2O Message Unit Pointersb A0H - BCH

MAIL_DATA3 MAIL_DATA2 MAIL_DATA1 MAIL_DATA0 C0H
MAIL_DATA7 MAIL_DATA6 MAIL_DATA5 MAIL_DATA4 C4H
MAIL_DATA11 MAIL_DATA10 MAIL_DATA9 MAIL_DATA8 C8H
MAIL_DATA15 MAIL_DATA14 MAIL_DATA13 MAIL_DATA12 CCH

PCI_MAIL_IERD PCI_MAIL_IEWR D0H
LB_MAIL_IERD LB_MAIL_IEWR D4H
MAIL_RD_STAT MAIL_WR_STAT D8H

QBA_MAP DCH
DMA_DELAY E0H
130 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
PCI_VENDOR: VENDOR ID (PCI REQUIRED)
Mnemonic: PCI_VENDOR
Offset: 00H
Size: 16 bits

PCI_DEVICE: DEVICE ID (PCI REQUIRED)
Mnemonic: PCI_DEVICE
Offset: 02H
Size: 16 bits

PCI_CMD: COMMAND REGISTER (PCI REQUIRED)
Mnemonic: PCI_CMD
Offset: 04H
Size: 16 bits

PCI_VENDOR

Bits Mnemonic Type
Reset
Value

Description

15-0 VENDOR FR 11B0H Vendor ID. This register identifies the vendor of the device.

PCI_DEVICE

Bits Mnemonic Type
Reset
Value

Description

15-0 DEVICE FR see text
Device ID. This register identifies the ID of the device. At reset it
reads back a value dependent on the type of EPC device:
960mode=01h, 961mode=02h, 962mode=04h, 292mode=10h

PCI_CMD

Bits Mnemonic Type
Reset
Value

Description

15-10 - R 0H reserved

9 FBB_EN FRW 0H

Fast Back-to-Back Enable
1 = EPC will perform fast back-to-back transfers when bus
master
0 = EPC will not perform fast back-to-back transfers

8 SERR_EN FRW 0H

System Error Enable
1 = System error enabled: If PAR_EN (bit 6) is also enabled then
SERR is driven in response to an address parity error.
0 = System error disabled: SERR is not driven.

7 - R 0H reserved

6 PAR_EN FRW 0H
Parity Error Enable:
1 = EPC will report PCI parity errors
0 = EPC will ignore PCI parity errors

5 - R 0H reserved

4 - R 0H reserved
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 131

Register Descriptions

Register Map
PCI_STAT: PCI STATUS REGISTER
Mnemonic: PCI_STAT
Offset: 06H
Size: 16 bits

PCI_CMD (cont’d)

Bits Mnemonic Type
Reset
Value

Description

3 - R 0H reserved

2 MASTER_EN FRW 0H
PCI Master Enable:
1 = EPC will act as PCI bus master (i.e. assert REQ)
0 = EPC will not act as PCI bus mastera

1 MEM_EN FRW 0H
Memory Access Enable
1 = EPC will respond to memory accesses on the PCI bus
0 = EPC will ignore ALL memory accesses on the PCI bus

0 IO_EN FRW 0H
I/O Access Enable
1 = EPC will respond to IO accesses on the PCI bus
0 = EPC will ignore ALL IO accesses on the PCI bus

a. Clearing this bit effectively prohibits any local bus reads/writes to PCI space. If PCI bus mastering
is disabled, all local bus writes to PCI space, and all DMA transfers destined for PCI space, will be
queued in the Local-to-PCI FIFO until either this bit is set, or the FIFO is full.

PCI_STAT

Bits Mnemonic Type
Reset
Value

Description

15 PAR_ERR FRW 0H
Parity Error: set (1) in response to a parity error being detected
on the PCI bus. Cleared by writing ’1’ to this bit.

14 SYS_ERR FRW 0H
System Error: set (1) in response to a system error being
detected by this device and reported on the SERR pin on the PCI
bus. Cleared by writing ’1’ to this bit.

13 M_ABORT FRW 0H
Master Abort: set (1) in response to a master abort being
detected during transaction in which the EPC was acting as a bus
master. Cleared by writing a '1' to this bit.

12 T_ABORT FRW 0H
Target Abort: set (1) in response to a target abort being detected
during transaction in which the EPC was acting as a bus master.
Cleared by writing '1' to this bit.

11 - R 0H reserved

10-9 DEVSEL FR 0H
Device Select Timing: Programmable during initialization for the
benefit of other PCI bus masters. Doesn't affect the operation of
the EPC.

8 PAR_REP FRW 0H

Data Parity Error Report: set (1) whenever the EPC acts as a
bus master and observes the PERR signal being driven. The
PAR_EN bit in PCI_CMD must also be enabled for this bit to be
set. Cleared by writing '1' to the bit.

7 FAST_BACK FR 0H

Fast Back-to-Back Target Enable: Used to indicate to other bus
masters the abillity of this device to respond to fast back-to-back
transfers.
Note: The state of this bit will not effect the internal operation of
the EPC and it will always respond properly to fast back-to-back
transfers.

6-0 - R 0H reserved
132 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
PCI_CC_REV: PCI CLASS AND REVISION REGISTER (PCI REQUIRED)
Mnemonic: PCI_CC_REV
Offset: 08h
Size: 32 bits

PCI_HDR_CFG: PCI HEADER/CONFIG. REGISTER (PCI REQUIRED)
Mnemonic: PCI_HDR_CFG
Offset: 0CH
Size; 32 bits

PCI_CC_REV

Bits Mnemonic Type
Reset
Value

Description

31-24 BASE_CLASS FR 0Ha

a. 6H is the base class for a host to PCI bridge. This can be programmed to suit the application.

PCI Base Class Code (see PCI specification)

23-16 SUB_CLASS FR 0H PCI Sub Class Code (see PCI specification)

15-8 PROG_IF FR 0H PCI Programming Interface Code (see PCI specification)

7-4 UREV FR 0H User Revision ID. These bits are programmable to indicate the
revision level of the system built with the EPC.

3-0 VREV R
Stepping

ID
V3 Revision. These bits are hardwired to reflect the revision
number of the component. Rev A0=4h

PCI_HDR_CFG

Bits Mnemonic Type
Reset
Value

Description

31-24 BIST R 0H Built in Self Test: Unimplemented; reads back as all "0"

23-16 HDR_TYPE R 0H Header Type: Unimplemented; reads back as all "0"

15-11 LT FRW 0H Latency Timer: Latency value in multiples of 8 clocks.

10-8 LTL R 0H Latency Timer: Unimplemented lower bits of the PCI latency timer
register

7-0 LINE_SIZE FRW 0H Cache Line Size: Has no effect on the internal operation of the
EPC
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 133

Register Descriptions

Register Map
PCI_I2O_BASE : PCI I 2O BASE ADDRESS REGISTER 1

Mnemonic: PCI_I2O_BASE
Offset: 10H
Size: 32 bits

PCI_IO_BASE: PCI ACCESS TO INTERNAL EPC REGISTERS
Mnemonic: PCI_IO_BASE
Offset: 10H, 14H2

Size: 32 bits

1.Only available when I2O mode is enabled.

PCI_I2O_BASE

Bits Mnemonic Type
Reset
Value

Description

31-20 ADR_BASE FRW 0H

Base Address: If the value of ADR_BASE matches that of
AD[31:20] during the address phase of a PCI access then a
match is detected. Since bits 31-20 are significant to the decoder,
the size of the aperture is 1MB. This size can be increased using
the corresponding ADR_SIZE register bits so that lower bits of
the decode are masked off.

19-4 - R 0H reserved

3 PREFETCH FR 0H Prefetchable: enables prefetching of data for read cycles by
anticipating sequential reads.

2-1 TYPE = "00" R 0H
Address Range Type: These read only bits are hardwired to "00"
to indicate that the device can be mapped anywhere in the 32 bit
address space.

0 IO FR 0H ‘1’ = access through I/O space. ‘0’ = access from memory space.

2.Located at 10H when I2O mode is disabled. When I2O is enabled, it is located at 14H.

PCI_IO_BASE

Bits Mnemonic Type
Reset
Value

Description

31-8 ADR_BASE FRW 0H

Base Address: If the value of ADR_BASE matches that of
AD[31:8] during the address phase of a PCI access then a match
is detected. Since bits 31-8 are significant to the decoder, the
size of the PCI-to-Internal register aperture is 256 bytes.

7-4 - R 0H reserved (Zero)

3 PREFETCH R 0H
Prefetchable. This bit is for configuration information only and has
no affect on the operation of the EPC. Accesses to internal
registers are never prefetched.

2-1 TYPE R 0H
Address Range Type: These read only bits are hardwired to "00"
to indicate that the device can be mapped anywhere in the 32 bit
address space.

0 IO FR 0H 1 = The PCI-to-Internal register aperture is in PCI I/O space
0 = The PCI-to-Internal register aperture is in PCI memory space
134 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
PCI_BASE0: PCI TO LOCAL BUS APERTURE 0 BASE ADDRESS 1

Mnemonic: PCI_BASE0
Offset: 14H
Size: 32 bits

1.Only available when I2O mode is disabled.

PCI_BASE0

Bits Mnemonic Type
Reset
Value

Description

31-20 ADR_BASE FRW 0H

Base Address: If the value of ADR_BASE matches that of
AD[31:20] during the address phase of a PCI access then a
match is detected. A larger address space can be decoded by
changing the ADR_SIZE field in the PCI_MAP0 register. This will
mask off some of the lower bits of this field to allow automatic
configuration software to determine the size of the aperture.

19-8 ADR_BASEL FRW 0H
Low order base address bits used for fine grain I/O decode only.
These bits are only used when IO=1 and ADR_SIZE is set to
0100-0111 in the PCI_MAP0 register.

7-4 - R 0H reserved

3 PREFETCH FR 0H

Prefetchable:
1 = Enable read prefetching for this aperture
0 = Disable read prefetching for this aperture
When LOCK is disabled and both the IO and PREFETCH bits are
written to ’1’, the PREFETCH bit will read ’0’ even though it is
internally set to ’1’ and the aperture will exhibit prefetch behavior.

2-1 TYPE R 0H
Address Range Type: These read only bits are hardwired to "00"
to indicate that the device can be mapped anywhere in the 32 bit
address space.

0 IO FR 0H

1 = The PCI-to-Local aperture 0 will respond to PCI IO space
access (CBE=2h, 3h)
0 = The PCI-to-Local aperture 0 will respond to PCI memory
space access (CBE=6h, 7h, Ch, Eh, Fh)
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 135

Register Descriptions

Register Map
PCI_BASE1: PCI TO LOCAL BUS APERTURE 1 BASE ADDRESS 1

Mnemonic: PCI_BASE1
Offset: 18H
Size: 32 bits

PCI_SUB_VENDOR: PCI SUBSYSTEM VENDOR
Mnemonic: PCI_SUB_VENDOR
Offset: 2CH
Size: 16 bits

1.Only available when I2O mode is disabled.

PCI_BASE1

Bits Mnemonic Type
Reset
Value

Description

31-20 ADR_BASE FRW 0H

Base Address: If the value of ADR_BASE matches that of
AD[31:20] during the address phase of a PCI access then a
match is detected.
In legacy DOS mode the address comparison has increased
granularity (see DOS Compatibility chapter).

19-14 ADR_BASEL
FRW

R
0H

Base address bits used only for DOS compatibility mode. See PC
Compatibility chapter. These bits read back as ’0’ unless DOS
mode is selected in the PCI_MAP1 register.

13-11 - R 0H reserved

10-8 DOS_MEM
FRW

R
0H

DOS Mode Memory Size: When IO=0 and DOS mode is
selected, these bits set the size of the real mode DOS memory
hole:
100 = 16K bytes (A[31:14])
101 = 32K bytes (A[31:15])
110 = 64K bytes (A[31:16])
111 = 128K bytes (A[31:17])
others = disabled
These bits read back as ’0’ unless DOS mode is selected in the
PCI_MAP1 register.

7-4 - R 0H reserved

3 PREFETCH FR 0H

Prefetchable:
1 = Enable read prefetching for this aperture
0 = Disable read prefetching for this aperture
When LOCK is disabled and both the IO and PREFETCH bits are
written to ’1’, the PREFETCH bit will read ’0’ even though it is
internally set to ’1’ and the aperture will exhibit prefetch behavior.

2-1 TYPE R 0H
Address Range Type: These read only bits are hardwired to "00"
to indicate that the device can be mapped anywhere in the 32 bit
address space.

0 IO FR 0H 1 = The PCI-to-Local aperture 0 is in PCI IO space
0 = The PCI-to-Local aperture 0 is in PCI memory space

PCI_SUB_VENDOR

Bits Mnemonic Type
Reset
Value

Description

15-0 VENDOR FRW 0H Subsystem Vendor ID: firmware programmable (PCI 2.1 and
Windows95® required)
136 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
PCI_SUB_VENDOR: PCI SUBSYSTEM ID
Mnemonic: PCI_SUB_ID
Offset: 2EH
Size: 16 bits

PCI_ROM: EXPANSION ROM BASE
Mnemonic: PCI_ROM
Offset: 30H
Size: 32 bits

PCI_BPARAM: PCI BUS PARAMETER REGISTER (PCI REQUIRED)
Mnemonic: PCI_BPARAM
Offset: 3CH
Size: 32 bits

PCI_SUB_ID

Bits Mnemonic Type
Reset
Value

Description

15-0 ID FRW 0H Subsystem ID: firmware programmable (PCI 2.1 and
Windows95® required)

PCI_ROM

Bits Mnemonic Type
Reset
Value

Description

31-12 ROM_BASE FRW 0H
Expansion ROM Base Address. The size of the ROM aperture is
controlled in PCI_MAP0 and the decoders are shared between
these apertures.

11-1 - R 0H reserved

0 ENABLE FRW 0H Expansion ROM Enable. 1 = enabled, 0 = disabled

PCI_BPARAM

Bits Mnemonic Type
Reset
Value

Description

31-24 MAX_LAT FR 0H Maximum Latency: For PCI autoconfiguration reporting only. Has
no effect on the internal operation of the EPC

23-16 MIN_GNT FR 0H Minimum Grant: For PCI autoconfiguration reporting only. Has
no effect on the internal operation of the EPC

15-11 - R 0H reserved

10-8 INT_PIN FR* 0H

Interrupt Pin: Selects which interrupt pin will be driven to the PCI
bus (PCI Spec). Chooses which INTx pin will receive internal
EPC interrupts (see "Interrupt Control" chapter).
000 = Disabled
001 = Use INTA
010 = Use INTB
011 = Use INTC
100 = Use INTD

7-0 INT_LINE FR* 0H Interrupt Line: For PCI autoconfiguration reporting only. Has no
effect on the internal operation of the EPC
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 137

Register Descriptions

Register Map
PCI_MAP0: PCI BUS TO LOCAL BUS ADDRESS MAP 0
Mnemonic: PCI_MAP0
Offset: 40H
Size: 32 bits
.

PCI_MAP0

Bits Mnemonic Type
Reset
Value

Description

31-20 MAP_ADR FRW 0H

Map Address: These bits correspond to bits LAD[31:20] in local
address space when a PCI to Local access is made. The lower bits
of MAP_ADR are masked off according to the ADR_SIZE bits in the
PCI_MAP registers.

19-16 - R 0H reserved

15 RD_POST_INH FRW 0H
Read Posting Inhibit: When set ’1’ the very first read of a burst read
from the corresponding aperture will not generate a STOP
regardless of the latency of the access.

14-12 - R 0H reserved

11-10 ROM_SIZE FRW 0H

ROM Size: Determines the size of the expansion ROM address
decoder:
00 = expansion ROM base register disabled
01 = 4K byte expansion ROM (A[31:12] significant)
10 = 16K byte expansion ROM (A[31:14] significant)
11 = 64K byte expansion ROM (A[31:16] significant)

9-8 SWAP FRW
0H

Byte Swap Control: Selects byte lane swapping for read and write
cycles according to the following table:

Auto Swap: When local bus BE[3:0] = “1100” or “0011” then a 16 bit
swap is done. When local bus BE[3:0] = “1110”, “1101”, “1011” or
“0111” then an 8 bit swap is done. Any other combination results in
non-swapped data.

SWAP D[31:24] D[23:26] D[15:8] D[7:0]
no swap, 32

bit
00 Q[31:24] Q[23:16] Q[15:8] Q[7:0]

16 bit 01 Q[15:8] Q[7:0] Q[31:24] Q[23:16]
8 bit 10 Q[7:0] Q[15:8] Q[23:16] Q[31:24]

11 Auto Swap
138 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
PCI_MAP0 (cont’d)

Bits Mnemonic Type
Reset
Value

Description

7-4 ADR_SIZE FRW 0H

Aperture Size: Legacy DOS mode uses a different decoding
scheme described in the "PC Compatibility" chapter of the manual.

3-2 - R 0H reserved

1 REG_ENa FRW 0H PCI_BASE0 register enable. 1 = PCI_BASE0 enabled,
0=PCI_BASE0 disabled (reads back as 0H).

0 ENABLEa FRW 0H PCI_BASE0 Aperture Enable. 1 = PCI-to-Local aperture 0 is
enabled, 0 = PCI-to-Local aperture 0 is disabled.

a.Must be written ’0’ when I2O mode is enabled

ADDR_SIZE Size Valid ADR BASE Bits
0000 1MB 31:20
0001 2MB 31:21
0010 4MB 31:22
0011 8MB 31:23
0100 16MB memory

256 byte I/O
31:24 (mem)

31:8 (IO)
0101 32MB memory

512 byte I/O
31:25 (mem)

31:9 (IO)
0110 64MB memory

1024 byte I/O
31:26 (mem)

31:10 (IO)
0111 128MB memory

2048 byte I/O
31:27 (mem)

31:11 (IO)
1000 256MB 31:28
1001 512MB 31:29
1010 1GB 31:30
11xx 1MB DOS Mode

(PCI_MAP1 only)
31:20

others - reserved
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 139

Register Descriptions

Register Map
PCI_MAP1: PCI BUS TO LOCAL BUS ADDRESS MAP 1 1

Mnemonic: PCI_MAP1
Offset: 44H
Size: 32 bits
.

1.Only available when I2O mode is disabled.

PCI_MAP1

Bits Mnemonic Type
Reset
Value

Description

31-20 MAP_ADR FRW 0H

Map Address: These bits correspond to bits LAD(31:20) in local
address space when a PCI to Local access is made. The lower bits
of MAP_ADR are masked off according to the ADR_SIZE bits in the
PCI_MAP registers.

19-16 - R 0H reserved

15 RD_POST_INH FRW 0H
Read Posting Inhibit: When set ’1’ the very first read of a burst read
from the corresponding aperture will not generate a STOP
regardless of the latency of the access.

14-10 - R 0H reserved

9-8 SWAP FRW 0H

Byte Swap Control: Selects byte lane swapping for read and write
cycles according to the following table:

Auto Swap: When local bus BE[3:0] = “1100” or “0011” then a 16 bit
swap is done. When local bus BE[3:0] = “1110”, “1101”, “1011” or
“0111” then an 8 bit swap is done. Any other combination results in
non-swapped data.

SWAP D[31:24] D[23:26] D[15:8] D[7:0]
no swap, 32

bit
00 Q[31:24] Q[23:16] Q[15:8] Q[7:0]

16 bit 01 Q[15:8] Q[7:0] Q[31:24] Q[23:16]
8 bit 10 Q[7:0] Q[15:8] Q[23:16] Q[31:24]

11 Auto Swap
140 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
PCI_MAP1 (Cont’d)

Bits Mnemonic Type
Reset
Value

Description

7-4 ADR_SIZE FRW 0H

Aperture Size: Legacy DOS mode uses a different decoding
scheme described in the "PC Compatibility" chapter of the manual.

3-2 - R 0H reserved

1 REG_EN FRW 0H PCI_BASE1 register enable. 1 = PCI_BASE1 enabled,
0=PCI_BASE1 disabled (reads back as 0H from PCI and Local).

0 ENABLE FRW 0H PCI_BASE1 Aperture Enable. 1 = PCI-to-Local aperture 1 is
enabled, 0 = PCI-to-Local aperture 1 is disabled.

ADDR_SIZE Size Valid ADR BASE Bits
0000 1MB 31:20
0001 2MB 31:21
0010 4MB 31:22
0011 8MB 31:23
0100 16MB memory

256 byte I/O
31:24 (mem)

31:8 (IO)
0101 32MB memory

512 byte I/O
31:25 (mem)

31:9 (IO)
0110 64MB memory

1024 byte I/O
31:26 (mem)

31:10 (IO)
0111 128MB memory

2048 byte I/O
31:27 (mem)

31:11 (IO)
1000 256MB 31:28
1001 512MB 31:29
1010 1GB 31:30
11xx 1MB DOS Mode

(PCI_MAP1 only)
31:20

others - reserved
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 141

Register Descriptions

Register Map
PCI_I2O_MAP: PCI BUS I 2O ATU LOCAL BUS ADDRESS MAP 1

Mnemonic: PCI_I2O_MAP
Offset: 44H
Size: 32 bits

1.Only available when I2O mode is enabled

PCI_I2O_MAP

Bits Mnemonic Type
Reset
Value

Description

31-20 MAP_ADR FRW 0H

Map Address: These bits correspond to bits LAD(31:20) in local
address space when a PCI to Local access is made. Address bits
LAD(19:2) are derived from the PCI bus itself (for a 1MB aperture
size). If the size of the aperture is increased, then the lower bits of
MAP_ADR become masked off according to the ADR_SIZE bits
in the PCI_MAP registers.

19-16 - R 0H reserved

15 RD_POST_DIS FR 0H Read Post Disable: When set '1' the very first read of a burst read
from the corresponding aperture will not generate a STOP#.

14-10 - R 0H reserved

9-8 SWAP FRW 0H

Byte Swap Control: Selects byte lane swapping for read and
write cycles according to the following table:

Auto Swap: When local bus BE[3:0] = “1100” or “0011” then a 16
bit swap is done. When local bus BE[3:0] = “1110”, “1101”, “1011”
or “0111” then an 8 bit swap is done. Any other combination
results in non-swapped data.

7-4 ADR_SIZE FRW 0H

Aperture Size: Legacy DOS mode uses a different decoding
scheme described in the "PC Compatibility" chapter of the
manual.

3-2 - R 0H reserved

SWAP D[31:24] D[23:26] D[15:8] D[7:0]
no swap, 32

bit
00 Q[31:24] Q[23:16] Q[15:8] Q[7:0]

16 bit 01 Q[15:8] Q[7:0] Q[31:24] Q[23:16]
8 bit 10 Q[7:0] Q[15:8] Q[23:16] Q[31:24]

11 Auto Swap

ADDR_SIZE Size Valid ADR BASE Bits
0000 1MB 31:20
0001 2MB 31:21
0010 4MB 31:22
0011 8MB 31:23
0100 16MB memory

256 byte I/O
31:24 (mem)

31:8 (IO)
0101 32MB memory

512 byte I/O
31:25 (mem)

31:9 (IO)
0110 64MB memory

1024 byte I/O
31:26 (mem)

31:10 (IO)
0111 128MB memory

2048 byte I/O
31:27 (mem)

31:11 (IO)
1000 256MB 31:28
1001 512MB 31:29
1010 1GB 31:30
11xx 1MB DOS Mode

(PCI_MAP1 only)
31:20

others - reserved
142 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
PCI_INT_STAT: PCI INTERRUPT STATUS REGISTER
Mnemonic: PCI_INT_STAT
Offset: 48H
Size: 32 bits

PCI_I2O_MAP (cont’d)

Bits Mnemonic Type
Reset
Value

Description

1 REG_EN FRW 0H PCI_BASE1 register enable. 1 = PCI_BASE1 enabled,
0=PCI_BASE1 disabled (reads back as 0H from PCI and Local).

0 ENABLE FRW 0H PCI_BASE1 Aperture Enable. 1 = PCI-to-Local aperture 1 is
enabled, 0 = PCI-to-Local aperture 1 is disabled.

PCI_INT_STAT

Bits Mnemonic Type
Reset
Value

Description

31 MAILBOX R 0H

Mailbox Interrupt:
1 = Mailbox (Doorbell) Interrupt request active
0 = No mailbox interrupts pending
Cleared by clearing MAIL_RD_STAT and MAIL_WR_STAT

30 LOCAL FRW 0H

Local Bus Direct Interrupt:
1 = Local bus master requests a PCI interrupt
0 = No operation
This bit is set by writing ’1’ and cleared by writing ‘0’

29-28 - R 0H reserved

27 OUT_POST FRW 0H

I2O Outbound Post List Not Empty: Indicates that the outbound
post list head pointer not equals the tail pointer
(OPL_HEAD¹OPL_TAIL). This bit is equivalent to the
PCI_I2O_ISTAT register bit 3 and can be read there also. It is
masked off only when the I2O_EN bit in the PCI_CFG register is
clear otherwise the not empty status will be readable here
regardless of the mask bit in PCI_INT_CFG. This bit is also
mapped into the PCI_I2O_ISTAT register bit 3 and can be read
there also.

26 - R 0H reserved

25 DMA1 FRW 0H
DMA channel 1 Interrupt:
1 = DMA channel 1 has requested an interrupt
0 = DMA channel 1 has not requested an interrupt

24 DMA0 FRW 0H
DMA channel 0 Interrupt:
1 = DMA channel 0 has requested an interrupt
0 = DMA channel 0 has not requested an interrupt

23-15 R 0H reserved

14 INTC_TO_D FRW 0H

INTD Output from INTC Input: Set (’1’) when enabled
(INTC_INTD bit in the corresponding PCI_INT_CFG register
field) and INTC is used as an input and an interrupt event has
occurred on INTC

13 INTB_TO_D FRW 0H

INTD Output from INTB Input: Set (’1’) when enabled
(INTB_INTD bit in the corresponding PCI_INT_CFG register
field) and INTB is used as an input and an interrupt event has
occurred on INTB
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 143

Register Descriptions

Register Map
PCI_INT_CFG: PCI INTERRUPT CONFIGURATION REGISTER
Mnemonic: PCI_INT_CFG
Offset: 4CH
Size: 32 bits

PCI_INT_STAT (cont’d)

Bits Mnemonic Type
Reset
Value

Description

12 INTA_TO_D FRW 0H

INTD Output from INTA Input: Set (’1’) when enabled
(INTA_INTD bit in the corresponding PCI_INT_CFG register field)
and INTA is used as an input and an interrupt event has occurred
on INTA

11 INTD_TO_C FRW 0H See description above for INTx_TO_ya

10 - R 0H reserved

9 INTB_TO_C FRW 0H See description above for INTx_TO_y

8 INTA_TO_C FRW 0H See description above for INTx_TO_y

7 INTD_TO_B FRW 0H See description above for INTx_TO_y

6 INTC_TO_B FRW 0H See description above for INTx_TO_y

5 - R 0H reserved

4 INTA_TO_B FRW 0H See description above for INTx_TO_y

3 INTD_TO_A FRW 0H See description above for INTx_TO_y

2 INTC_TO_A FRW 0H See description above for INTx_TO_y

1 INTB_TO_A FRW 0H See description above for INTx_TO_y

0 - R 0H reserved

a. All of the INTx_TO_y bits function identically with "x" being the source of the interrupt (PCI INTx)
and "y" being the destination for the request (PCI INTy).
Note: LOCAL interrupt request is cleared by writing "0"; writing ’1’ has no effect.
All other writable status bits are cleared by writing ’1’; writing ’0’ has no effect.

PCI_INT_CFG
Bits Mnemonic Type Reset

Value
Description

31 MAILBOX FRW 0H Mailbox Interrupt Enable: Enables a PCI interrupt from the
mailbox unit. (see the Mailbox Registers chapter).

30 LOCAL FRW 0H Local Bus Direct Interrupt Enable: Enables direct local bus to PCI
interrupts

29 MASTER_PI FRW 0H PCI Master Local Interrupt Enable: When enabled (1) together
with the PCI_PERR bit in LB_IMASK (bit 3), a local bus interrupt
will be generated whenever the VxxxEPC acts as a bus master
and a parity error occurs.

28 SLAVE_PI FRW 0H PCI Slave Local Interrupt Enable: When enabled (1) together with
the PCI_PERR bit in LB_IMASK (bit 3), a local bus interrupt will
be generated whenever the VxxxEPC acts as a bus slave and a
parity error occurs.

27 OUT_POST R 0H I2O Outbound Post List Not Empty: When Enabled (‘1’) the PCI
interrupt pin (selected by the INT_PIN field of the PCI_BPARAM
register) is asserted whenever the outbound post list head pointer
not equals the tail pointer (OPL_HEAD¹OPL_TAIL). This bit is
equivalent to the PCI_I2O_MASK register bit 3 and can be read/
written there also.

26 - R 0H reserved
144 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
PCI_INT_CFG (cont’d)

Bits Mnemonic Type
Reset
Value

Description

25 DMA1 FRW 0H DMA Channel 1 interrupt enable

24 DMA0 FRW 0H DMA Channel 0 interrupt enable

23-22 MODE_D FRW 0H INTD Interrupt Mode: Determines use of the corresponding
interrupt pin.

21-20 MODE_C FRW 0H INTC Interrupt Mode
Note: See MODE_D description for bit settings.

19-18 MODE_B FRW 0H INTB Interrupt Mode
Note: See MODE_D description for bit settings.

17-16 MODE_A FRW 0H
INTA Interrupt Mode
Note: See MODE_D description for bit settings.

15 INTD_TO_LB FRW 0H
1 = INTD will request local ICU interrupts when the input is active
0 = INTD will never request LICU interrupts

14 INTC_TO_D FRW 0H
1 = INTC will act as interrupt request for INTD output
0 = INTC will not act as interrupt request for INTD output

13 INTB_TO_D FRW 0H
1 = INTB will act as interrupt request for INTD output
0 = INTB will not act as interrupt request for INTD output

12 INTA_TO_D FRW 0H
1 = INTA will act as interrupt request for INTD output
0 = INTA will not act as interrupt request for INTD output

11 INTD_TO_C FRW 0H
1 = INTD will act as interrupt request for INTC output
0 = INTD will not act as interrupt request for INTC output

10 INTC_TO_LB FRW 0H
1 = INTC will request local ICU interrupts when the input is active
0 = INTC will never request LICU interrupts

9 INTB_TO_C FRW 0H
1 = INTB will act as interrupt request for INTC output
0 = INTB will not act as interrupt request for INTC output

8 INTA_TO_C FRW 0H
1 = INTA will act as interrupt request for INTC output
0 = INTA will not act as interrupt request for INTC output

7 INTD_TO_B FRW 0H
1 = INTD will act as interrupt request for INTB output
0 = INTD will not act as interrupt request for INTB output

6 INTC_TO_B FRW 0H
1 = INTC will act as interrupt request for INTB output
0 = INTC will not act as interrupt request for INTB output

5 INTB_TO_LB FRW 0H
1 = INTB will request local ICU interrupts when the input is active
0 = INTB will never request LICU interrupts

4 INTA_TO_B FRW 0H
1 = INTA will act as interrupt request for INTB output
0 = INTA will not act as interrupt request for INTB output

3 INTD_TO_A FRW 0H
1 = INTD will act as interrupt request for INTA output
0 = INTD will not act as interrupt request for INTA output

2 INTC_TO_A FRW 0H
1 = INTC will act as interrupt request for INTA output
0 = INTC will not act as interrupt request for INTA output

1 INTB_TO_A FRW 0H
1 = INTB will act as interrupt request for INTA output
0 = INTB will not act as interrupt request for INTA output

0 INTA_TO_LB FRW 0H
1 = INTA will request local ICU interrupts when the input is active
0 = INTA will never request LICU interrupts

MODE_D Description
00 Active low level triggered input
01 High-to-low edge triggered input
10 Software cleared output. INTD pin is asserted via an interrupt

event and cleared through the PCI_INT_STAT register.
11 reserved
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 145

Register Descriptions

Register Map
LB_BASE 0,1 : LOCAL BUS TO PCI BUS APERTURE 0,1 ADDRESS
Mnemonic: LB_BASE0, 1
Offset: 54H, 58H
Size: 32 bits

LB_BASE0, 1

Bits Mnemonic Type
Reset
Value

Description

31-20 ADR_BASE FRW 0H

Base Address: If the value of ADR_BASE matches that of local
address bits 31:20 during the address phase of a local access
then a match is detected. Since bits 31-20 are significant to the
decoder, the size of the aperture is 1MB. The aperture size can
be increased using the corresponding ADR_SIZE register bits so
that lower bits of the decode are masked off.

19-10 - R 0H reserved

9-8 SWAP FRW 0H

Byte Swap Control: Selects byte lane swapping for read and
write cycles according to the following table:

Auto Swap: When local bus BE[3:0] = “1100” or “0011” then a 16
bit swap is done. When local bus BE[3:0] = “1110”, “1101”, “1011”
or “0111” then an 8 bit swap is done. Any other combination
results in non-swapped data.

7-4 ADR_SIZE FRW 0H

Aperture Size: The size of the aperture is determined as follows:

3 PREFETCH FRW 0H
Prefetch Enable:
1 = enable the aperture for read prefetching
0 = disable read prefetching

2-1 - R 0H reserved

0 ENABLE FRW 0H 1 = enable Local-to-PCI aperture 0.
0 = disable Local-to-PCI aperture 0.

SWAP D[31:24] D[23:26] D[15:8] D[7:0]
no swap, 32

bit
00 Q[31:24] Q[23:16] Q[15:8] Q[7:0]

16 bit 01 Q[15:8] Q[7:0] Q[31:24] Q[23:16]
8 bit 10 Q[7:0] Q[15:8] Q[23:16] Q[31:24]

11 Auto Swap

ADDR_SIZE Size Valid ADR BASE Bits
0000 1MB 31:20
0001 2MB 31:21
0010 4MB 31:22
0011 8MB 31:23
0100 16MB 31:24
0101 32MB 31:25
0110 64MB 31:26
0111 128MB 31:27
1000 256MB 31:28
1001 512MB 31:29
1010a

a.(The 1GB and 2GB aperture can be placed on a 512MB
boundary

1GB 31:29
1011a 2GB 31:29
others reserved
146 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
LB_MAP0, 1: LOCAL BUS TO PCI BUS ADDRESS MAP 0, 1
Mnemonic: LB_MAP0,1
Offset: 5EH, 62H
Size: 16 bits

LB_MAP0, 1

Bits Mnemonic Type
Reset
Value

Description

15-4 MAP_ADR FRW 0H

Map Address: These bits correspond to bits AD[31:20] in PCI
address space when a Local to PCI access is made. Address
bits AD[19:2] are derived from the local bus itself. If the size of
the aperture is increased, then the lower bits of MAP_ADR
become masked off according to the ADR_SIZE bits in the
LB_BASE registers.

3-1 TYPE FRW 0H

Access Type: Determines which PCI bus command will be driven
for local bus to PCI bus access:a

000 = Interrupt Acknowledge (Read)
001 = I/O Read/Write
011 = Memory Read/Write
101 = Configuration Read/Write
110 = Memory Read Multiple/Memory Write
others = reserved

a. The value in this bit field is driven on the C/BE[3:1] PCI bus pins directly (except for TYPE="110":
see note). C/BE0 is set based on whether the cycle is a read (0) or a write (1). No checking is done
by the EPC device to see if the command type is supported (see the "Aperture Operation" section
for more details). Reserved combinations can be used to generate other PCI commands directly.

0 AD_LOW_EN FRW 0H Low Address Override Enable: When Set (1) the AD[1:0] value
transmitted during the address phase will be generated from the
AD_LOW value in the PCI_CFG register. When cleared (0) the
value of AD[1:0] will be “00” except for I/O cycles where AD[1:0]
correspond to the byte enables.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 147

Register Descriptions

Register Map
LB_BASE2: LOCAL BUS TO PCI BUS I/O APERTURE ADDRESS a

Mnemonic: LB_BASE2
Offset: 64H
Size: 16 bits

LB_MAP2: LOCAL BUS TO PCI BUS I/O ADDRESS MAP
Mnemonic: LB_MAP2
Offset: 66H
Size: 16 bits

LB_BASE 2

Bits Mnemonic Type
Reset
Value

Description

15-8 ADR_BASE FRW 0H

Base Address: If the value of ADR_BASE matches that of local
address bits 31:24 during the address phase of a local access
then a match is detected. Since bits 31-24 are significant to the
decoder, the size of the aperture is 16MB and is fixed at that size.

7-6 SWAP FRW 0H

Byte Swap Control: Selects byte lane swapping for read and
write cycles according to the following table:

Auto Swap: When local bus BE[3:0] = “1100” or “0011” then a 16
bit swap is done. When local bus BE[3:0] = “1110”, “1101”, “1011”
or “0111” then an 8-bit swap is done. Any other combination
results in non-swapped data.

5-1 - R 0H reserved

0 ENABLE FRW 0H LB_BASE Enable: "1" to enable the aperture.

LB_MAP2

Bits Mnemonic Type
Reset
Value

Description

15-8 MAP_ADR FRW 0H

Map Address: These bits correspond to bits AD[31:24] in PCI
address space when a Local to PCI access is made. Address bits
AD[23:2] are derived from the local bus itself. Access through this
aperture results in an I/O cycle on the PCI bus.

7-0 - R 0H reserved

SWAP D[31:24] D[23:26] D[15:8] D[7:0]
no swap, 32

bit
00 Q[31:24] Q[23:16] Q[15:8] Q[7:0]

16 bit 01 Q[15:8] Q[7:0] Q[31:24] Q[23:16]
8 bit 10 Q[7:0] Q[15:8] Q[23:16] Q[31:24]

11 Auto Swap
148 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
LB_SIZE: LOCAL BUS SIZE RREGISTER
Mnemonic: LB_SIZE
Offset: 68H
Size: 32 bits

LB_IO_BASE: LOCAL BUS I/O BASE
Mnemonic: LB_IO_BASE
Offset: 6EH
Size: 16 bits

LB_SIZE

Bits Mnemonic Type
Reset
Value

Description

31-30 REGION_F FRW 0H

Local Bus Width for addressregion 0xF0000000 to 0xFFFFFFFF:

29-28 REGION_E FRW 0H Local Bus Width for address region 0xE0000000 to 0xEFFFFFFF

27-26 REGION_D FRW 0H Local Bus Width for address region 0xD0000000 to 0xDFFFFFFF

25-24 REGION_C FRW 0H Local Bus Width for address region 0xC0000000 to 0xCFFFFFFF

23-22 REGION_B FRW 0H Local Bus Width for address region 0xB0000000 to 0xBFFFFFFF

21-20 REGION_A FRW 0H Local Bus Width for address region 0xA0000000 to 0xAFFFFFFF

19-18 REGION_9 FRW 0H Local Bus Width for address region 0x90000000 to 0x9FFFFFFF

17-16 REGION_8 FRW 0H Local Bus Width for address region 0x80000000 to 0x8FFFFFFF

15-14 REGION_7 FRW 0H Local Bus Width for address region 0x70000000 to 0x7FFFFFFF

13-12 REGION_6 FRW 0H Local Bus Width for address region 0x60000000 to 0x6FFFFFFF

11-10 REGION_5 FRW 0H Local Bus Width for address region 0x50000000 to 0x5FFFFFFF

9-8 REGION_4 FRW 0H Local Bus Width for address region 0x40000000 to 0x4FFFFFFF

7-6 REGION_3 FRW 0H Local Bus Width for address region 0x30000000 to 0x3FFFFFFF

5-4 REGION_2 FRW 0H Local Bus Width for address region 0x20000000 to 0x2FFFFFFF

3-2 REGION_1 FRW 0H Local Bus Width for address region 0x10000000 to 0x1FFFFFFF

1-0 REGION_0 FRW 0H Local Bus Width for address region 0x00000000 to 0x0FFFFFFF

LB_IO_BASE

Bits Mnemonic Type
Reset
Value

Description

15-0 ADR_BASE FRW 0

Local to Internal Register Map Base Address: sets the base
address for local bus side accesses to the EPC internal registers.

If the value of ADR_BASE matches that of local address bits
31:16 during the address phase of a local access then a match is
detected. Since bits 31-16 are significant to the decoder, the size
of the aperture is 64KB (only a small fraction of this is used).

REGION_EF V350EPC (32 Bit mode)
V360EPC

V350EPC in 16 Bit Slave
Mode Only

00 32-bit 16-bit Unpacked
01 16-bit Packed 8-bit
10 8-bit 16-bit Packed
11 16-bit Unpacked 32-bit
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 149

Register Descriptions

Register Map
FIFO_CFG: FIFO CONFIGURATION REGISTER
Mnemonic: FIFO_CFG
Offset: 70H
Size: 16 bits

FIFO_CFG
Bits Mnemonic Type Reset

Value
Description

15-14 PBRST_MAX FRW 0H PCI Bus Maximum Burst Size :
00 = 4 Words
01 = 8 Words
10 = 16 Words
11 = 256 Words

13-12 PCI_WR_LB FRW 0H Write FIFO drain strategy for PCI Bus Write to Local Bus Aperture
0 and 1:
00 = Assert Local bus request immediately whenever the
corresponding FIFO is not empty
01 = FIFO not empty and the PCI cycle filling it is finisheda

10 = Assert Local bus request whenever the PCI bus to Local
corresponding FIFO has 3 or more words of data pending
11 = Assert Local bus request whenever the PCI bus to Local
FIFO has 3 or more words of data pending or the FIFO is not
empty and the PCI cycle filling it is finished

a.The cycle filling the FIFO could be a DMA read or slave write

11-10 PCI_RD_LB1b

b. Has no effect on DMA transfers.

FRW 0H Read FIFO fill strategy for PCI Bus Read from Local Bus
Aperture 1:
00 = Assert Local bus request whenever the corresponding read
FIFO is not full (room for 1 or more words available).
01 = Assert Local bus request whenever the corresponding read
FIFO is at most half full (room for 2 or more words available).
10 = Assert Local bus request whenever the corresponding FIFO
is empty
11 = reserved

9-8 PCI_RD_LB0b FRW 0H FIFO control for PCI Bus Read from Local Bus Aperture 0: see
description under PCI_RD_LB1, above.

7-6 LBRST_MAX FRW 0H Local Bus Maximum Burst Size:
00 =4 Words 10 =16 Words
01 =8 Words 11 =256 Words

5-4 LB_WR_PCI FRW 0H FIFO control for Local Bus Write to PCI Bus Aperture 0 and 1:
00 = Assert PCI bus request immediately whenever the
corresponding FIFO is not empty
01 = FIFO not empty and the LB cycle filling it is finished
10 = Assert PCI bus request whenever the Local bus to PCI
corresponding FIFO has 3 or more words of data pending
11 = Assert PCI bus request whenever the Local bus to PCI
corresponding FIFO has 3 or more words of data pending or the
FIFO is not empty and LB cycle filling it is finished

3-2 LB_RD_PCI1b FRW 0H FIFO control for Local Bus Read from PCI Bus Aperture 1:
00 = Assert PCI bus request whenever the corresponding read
FIFO is not full (room for 1 or more words available)
01 = Assert PCI bus request whenever the corresponding read
FIFO is at most half full (room for 2 or more words available).
10 = Assert PCI bus request whenever the corresponding FIFO is
empty
11 = reserved

1-0 LB_RD_PCI0b FRW 0H FIFO control for Local Bus Read from PCI Bus Aperture 0: see
description under LB_RD_PCI1, above.
150 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
FIFO_PRIORITY: FIFO PRIORITY CONTROL REGISTER
Mnemonic: FIFO_PRIORITY
Offset: 72H
Size: 16 bit

FIFO_PRIORITY

Bits Mnemonic Type
Reset
Value

Description

15-13 - R 0H reserved

12 LOCAL FRW 0H

Local Bus Request Priority: this controls the relative priority of
pending transfers involving PCI to local bus.
0 = PCI write to local bus has priority over PCI read from local

bus
1 = PCI read from local bus has priority over PCI write to local

bus

11-10 LB_RD1 FRW 0H

Local Bus Read Flush Strategy for Aperture 1: this controls the
condition that will cause Aperture 1 Local bus read prefetch FIFO
to be flushed for the purpose of maintaining data coherency:
00 = Local bus to PCI writes never cause a flusha

01 = Flush at the end of a burst (don’t keep extra data)
10 = Local bus to PCI write via aperture 1 will cause a flush (but

not aperture 0)
11 = Any local bus to PCI write will cause a flush

a.Only this option should be chosen when prefetching is disabled for the aperture. When prefetching
is disabled, there is never any prefetch data to flush anyway.

9-8 LB_RD0 FRW 0H

Local Bus Read Flush Strategy for Aperture 0: this controls the
condition that will cause aperture 0 Local bus read prefetch FIFO
to be flushed for the purpose of maintaining data coherency:
00 = Local bus to PCI writes never cause a flusha

01 = Flush at the end of a burst (don’t keep extra data)
10 = Local bus to PCI write via aperture 0 will cause a flush (but

not aperture 1)
11 = Any local bus to PCI write will cause a flush

7-5 - R 0H reserved

4 PCI FRW 0H

PCI Bus Request Priority: this controls the relative priority of
pending transfers involving local bus to PCI bus.
0 = Local bus write to PCI has priority over Local bus read from

PCI
1 = Local bus read from PCI has priority over Local bus write to

PCI

3-2 PCI_RD1 FRW 0H

PCI Read Flush Strategy for Aperture 1: this controls the
condition that will cause Aperture 1 PCI read prefetch FIFO to be
flushed for the purpose of maintaining data coherency:
00 = PCI to local bus writes never cause a flusha

01 = Flush at the end of a burst (don’t keep extra data)
10 = PCI to local bus write via aperture 1 will cause a flush (but

not writes to aperture 0)
11 = Any PCI to local bus write will cause a flush

1-0 PCI_RD0 FRW 0H

PCI Read Flush Strategy for Aperture 0: this controls the
condition that will cause aperture 0 PCI read prefetch FIFO to be
flushed for the purpose of maintaining data coherency:
00 = PCI to local bus writes never cause a flusha

01 = Flush at the end of a burst (don’t keep extra data)
10 = PCI to local bus write via aperture 0 will cause a flush (but

not writes to aperture 1)
11 = Any PCI to local bus write will cause a flush
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 151

Register Descriptions

Register Map
FIFO_STAT: FIFO STATUS REGISTER
Mnemonic: FIFO_STAT
Offset: 74H
Size: 16 bits

FIFO_STAT

Bits Mnemonic Type
Reset
Value

Description

15-14 - R 0H reserved

13-12 L2P_WR R 0H

Status of the Local-to-PCI write FIFO:a

00 = Empty
01 = (While Filling) One or more words has been placed in the
FIFO
 (While Draining) One data word remaining in the FIFO to be
written to the PCI bus
10 = FIFO is completely full
11 = FIFO has room for only one more word

a. The transitions for the bits in this field follows a hysterisis curve depending on whether the FIFO
has reached certain levels of "fullness". Please see the "Bridge Operation" section for more detail.

11-10 L2P_RD1 R 0H

PCI Bus Read from Local Bus Aperture 1 FIFO Status:
00 = Between empty and full
01 = Empty
10 = Full
11 = Between empty and full

9-8 L2P_RD0 R 0H

PCI Bus Read from Local Bus Aperture 0 FIFO Status:
00 = Between empty and full
01 = Empty
10 = Full
11 = Between empty and full

7-6 - R 0H reserved

5-4 P2L_WR R 0H

Status of the PCI-to-Local write FIFO:b

00 = Empty
01 = (While Filling) One or more words has been placed in the
FIFO
 (While Draining) One data word remaining in the FIFO to be
written to the PCI bus
10 = FIFO is completely full
11 = FIFO has room for only one more word

b. The transitions for the bits in this field follows a hysterisis curve depending on whether the FIFO
has reached certain levels of "fullness". Please see the "Bridge Operation" section for more detail.

3-2 P2L_RD1 R 0H

Local Bus Read from PCI Bus Aperture 1 FIFO Status:
00 = Between empty and full
01 = Empty
10 = Full
11 = Between empty and full

1-0 P2L_RD0 R 0H

Local Bus Read from PCI Bus Aperture 0 FIFO Status:
00 = Between empty and full
01 = Empty
10 = Full
11 = Between empty and full
152 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
LB_ISTAT: LOCAL BUS INTERRUPT CONTROL AND STATUS REGISTER
Mnemonic: LB_ISTAT
Offset: 76H
Size: 8 bits

LB_ISTAT

Bits Mnemonic Type
Reset
Value

Description

7 MAILBOXa

a. This bit is a logical OR of all of the mailbox interrupt requests. It is only cleared when all of the
individual mailbox interrupt requests have been cleared via reading or writing the applicable mailbox
register. See the "Mailbox Register" section of the "Bridge Operation" chapter for more information.

R 0H
1 = an interrupt has been requested by one or more of the
mailbox registers
0 = no mailbox interrupts pending

6 PCI_RD FRW 0H

1 = Target Abort or lack of Device Select has been seen during a
local bus to PCI bus read access and an interrupt request for
such events has been enabled; clear by writing "0"
0 = no local bus read of PCI space error interrupt request is
pending.

5 PCI_WR FRW 0H

1 = Target Abort or lack of Device Select is seen during a local
bus to PCI bus write access and an interrupt request for such
events has been enabled; clear by writing "0"
0 = no local bus write to PCI space error interrupt request is
pending.

4 PCI_INTb

b. Note: All writable status bits are cleared by writing ’0’. Writing ’1’ has no effect.

FRW 0H 1 = a PCI interrupt pin has requested an interrupt
0 = no pending PCI interrupt events

3 PCI_PERR RW 0H
PCI Parity Error Interrupt: This bit is set in response to parity error
seen on the PCI bus as a result of the VxxxEPC acting as either a
master or a slave for the cycle.

2 I2O_QWRa RW 0H

I2O Inbound Post Queue Write Interrupt: This bit is set when 3
conditions are met: I2O is enabled, the corresponding bit in
LB_IMASK is enabled and the inbound post list is written.
Cleared by writing ‘0’.

1 DMA1 FRW 0H 1 = DMA channel 1 has requested an interrupt;clear by writing"0"
0 = DMA channel 1 has not requested an interrupt.

0 DMA0 FRW 0H 1 = DMA channel 0 has requested an interrupt;clear by writing "0"
0 = DMA channel 0 has not requested an interrupt.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 153

Register Descriptions

Register Map
LB_IMASK: LOCAL BUS INTERRUPT MASK REGISTER
Mnemonic: LB_IMASK
Offset: 77H
Size: 8 bits

LB_IMASK

Bits Mnemonic Type
Reset
Value

Description

7 MAILBOX FRW 0H
Global Mailbox Interrupt Enable:
1 = mailbox interrupts are enabled
0 = all mailbox interrupts are masked

6 PCI_RD FRW 0H
PCI Read Error Interrupt Enable:
1 = enable local interrrupt requests for PCI read errors
0 = mask local interrrupt requests for PCI read errors

5 PCI_WR FRW 0H
PCI Write Error Interrupt Enable:
1 = enable local interrrupt requests for PCI write errors
0 = mask local interrrupt requests for PCI write errors

4 PCI_INT FRW 0H
Global PCI Interrupt to Local Interrupt Enable:
1 = enable PCI interrupt requests to request a local interrupt
0 = mask PCI interrupt requests to request a local interrupt

3 PCI_PERR RW 0H

PCI Parity Error Interrupt Enable: When enabled (1) the
corresponding bit in LB_ISTAT is set in response to a parity error
event seen on the PCI bus. In order for a PCI parity event to be
detected one or more of the MASTER_PI and/or the SLAVE_PI
bits in PCI_INT_CFG must be enabled in addition to this bit.

2 I2O_QWR RW 0H
I2O Inbound Post Queue Write Interrupt Enable: Set (1) to enable
inbound post queue write cycles to generate interrupts on the
Local Bus.

1 DMA1 FRW 0H
DMA Channel 1 Interrupt Enable:
1 = enable DMA Channel 1 interrupt requests
0 = mask DMA Channel 1 interrupt requests

0 DMA0 FRW 0H
DMA Channel 0 Interrupt Enable:
1 = enable DMA Channel 0 interrupt requests
0 = mask DMA Channel 0 interrupt requests
154 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
SYSTEM REGISTER
Mnemonic: SYSTEM
Offset: 78H
Size: 16 bits

SYSTEM

Bits Mnemonic Type
Reset
Value

Description

15 RST_OUT FR 0H Reset Output Control: When set to ‘1’ the reset output (see RDIR
pin description) is de-asserted.

14 LOCK FR 0H
Lock Register Contents: When set to ‘1’ the SYSTEM register
becomes unwritable. LOCK can only be cleared by writing the
SYSTEM register with 0xA05Fa.

a. Writing 0xA05F to un-lock the system register will not overwrite the current System register values.

13 SPROM_EN FR 0H
Serial PROM Software Access Enable.
1 = SCL/Local parity error pin functions as SCL
0 = SCL/Local parity error pin functions as local parity error

12 SCL FR 0H
Serial PROM Clock Output. When SPROM_EN is enabled (‘1’)
then this bit controls the state of the SCL pin.

11 SDA_OUT FR 0H

Serial PROM Data Output. When SPROM_EN is enabled (‘1’)
then this bit controls the state of the SDA pin. When SDA_OUT
is ‘0’ then the SDA pin will be driven low. For SDA_OUT = ‘1’ the
SDA pin floats to high impedance.

10 SDA_IN R X
Serial PROM Data In. Reads back the SDA input directly from
the pin.

9 POE FR 0H
Local Bus Parity:
1=odd parity
0=even parity

8 FAST_REQ FR 0H
0 = bus follows strict Am29030 protocol
1 = bus follows high-performance Am29K protocol
This bit has no affect on devices other than the V292EPC.

7 - R 0H reserved

6 LB_RD_PCI1 W 0H 1 = Local Read from PCI Bus (Aperture 1) FIFO Flush b

0 = no operation

b.LOCK bit in SYSTEM register must be set to "0" to write this bit.

5 LB_RD_PCI0 W 0H 1 = Local Read from PCI Bus (Aperture 0) FIFO Flush b

0 = no operation

4 LB_WR_PCI W 0H 1 = Local to PCI Write FIFO Flush b

0 = no operation

3 - R 0H reserved

2 PCI_RD_LB1 W 0H 1 = PCI Read from Local Bus (Aperture 1) FIFO Flush b

0 = no operation

1 PCI_RD_LB0 W 0H 1 = PCI Read from Local Bus (Aperture 0) FIFO Flush b

0 = no operation

0 PCI_WR_LB W 0H 1 = PCI to Local Write FIFO Flush b

0 = no operation
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 155

Register Descriptions

Register Map
LB_CFG REGISTER: LOCAL BUS CONFIGURATION REGISTER a

Mnemonic: LB_CFG
Offset: 7AH
Size: 16 bits

LB_CFG

Bits Mnemonic Type
Reset
Value

Description

15 - R 0H reserved

14-13 TO_LENGTH FRW Local Bus Time-out Time Constant: "11" = 1024 cycles,
"10" = 512 cycles, "01" = 256 cycles, "00" = 64 cycles

12 LB_RST FRW 0H

Local Bus Reset control: when set to ’1’, the RST_OUT bit in
SYSTEM will also control the operation of the local bus master/
slave state machines so that they will return to their idle states
when RST_OUT is ’0’. when LB_RST is cleared to ’0’, then
RST_OUT only controls the state of the reset output (either LRST
or PRST)and the state of the local master/slave are not affected.

11 PPC_RDY FRW 0H

Power PC Ready: this bit is defined only for the V292EPC and
determines how the RDY signal operates when a local bus
master (such as a PPC403Gx) accesses the V292EPC for read
cycles. When disabled (0) the RDY signal operates normally.
However, when enabled (1) the relationship of read data to the
RDY signal is modified so that data will exist for one cycle after
RDY (normally valid data would be seen at the same time as
RDY is seen). This allows the V292EPC to be used with the
PPC403Gx with only a small single programmable logic device.
No address/data path registers are required.

10 LB_INT FRW 0H

Local Bus Interrupt Enable: When this bit is enabled and the
PCI_RD and/or PCI_WR bits are enabled in LB_IMASK, a time-
out event will cause the local bus interrupt to be asserted via the
LB_ISTAT register bits PCI_RD (for time-out on a read) or
PCI_WR (for time-out on a write)

9 ERR_ENa FRW 0H

BTERM/ERR Enable: When enabled (‘1’) the V962EPC will
assert the local bus BTERM(V961EPC, V962EPC) or
ERR(V292EPC) signal for one clock whenever a time-out occurs.
A time-out event occurs when a request to the EPC is
outstanding for longer than the value determined by the
TO_LENGTH register bit.

8 RDY_EN FRW 0H
Ready Enable: When enabled (‘1’) the EPC will assert the local
bus READY or RDY signal for one clock whenever a time-out
occurs.

7b BE_IMODE FRW 0H

Byte Enable Input Mode: this bit is defined only for the EPC when
in 29K bus mode and determines how the BWE[3:0] signals
operate as inputs. When this bit is clear (0) the local bus slave
controller on the EPC will assume that any read access to the
EPC by an external master device is 32 bits (all bytes are
enabled). When set (1) the EPC slave controller will treat the
BWE[3:0] as byte enables for both read and write.

6b BE_OMODE FRW 0H

Byte Enable Output Mode: this bit is defined only for the EPC
when in 29K bus mode to determine how the BWE[3:0] signals
operate as outputs. When this bit is clear (0) the local bus master
controller on the EPC will drive the BWE[3:0] active only during
write cycles and remain de-asserted for read cycles. When set (1)
the V292EPC will assert the appropriate byte enable information
onto the BWE[3:0] during both read and write cycles.

5 ENDIAN FRW 0H

Endian Mode: This determines where 8 and 16-bit data is
connected to the 32-bit local data bus for 8 and 16 bit local
master access. It also determines the byte order for 8/16 bit
operations. 0=little endian, 1=big endian.
156 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
LB_CFG (cont’d)

Bits Mnemonic Type
Reset
Value

Description

4 PARK_EN FRW 0H
Local Bus Parking Enable: When set (1), the local bus address
and data lines will be driven when the grant is asserted to the
EPC and the bus state is idle.

3 - R 0H reserved

2 FBB_DISb FRW 0H Fast Back-to-Back Disabled: When set (1), the local bus master
will not perform fast back-to-back cycles.

1-0 - R 0H reserved

a.The function of ERR_EN=’1’ and RDY_EN=’1’ used together is undefined.
b. This is a reserved bit in EPC Revision A0
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 157

Register Descriptions

Register Map
PCI_CFG: PCI BUS CONFIGURATION REGISTER a

Mnemonic: PCI_CFG
Offset: 7CH
Size: 16 bits

DMA_PCI_ADR: PCI DMA ADDRESS REGISTERS
Mnemonic: DMA_PCI_ADDR0, 1
Offset: 80H, 90H
Size: 32 bits

PCI_CFG

Bits Mnemonic Type
Reset
Value

Description

15 I2O_EN FRW 0H I2O Enable

14 IO_REG_DIS FRW 0H

Disable PCI_IO_BASE register: when set (1) the contents of
PCI_IO_BASE register will read back ‘0’ although the register
may actually contain non-zero data. The register remains
writeable and the decode function of the chip will remain intact.

13 IO_DIS FRW 0H Disable PCI_IO_BASE Decoder: when set (1) PCI_IO_BASE will
not respond to PCI cycles.

12 EN3V R 0H Enable I/O buffers for 3.3V operation.

11 - R 0H reserved

10 RETRY_EN FR 0/1Ha

a.This bit is initialized to ’1’ when SDA is pulled high and no EEPROM device attached.

PCI Configuration Retry: When set (’1’), the EPC will retry all PCI
configuration cycles that are targeted at the internal registers.

9-8 AD_LOW FRW 0H

PCI AD[1:0]. Override Value: When one of the LB_MAP registers
is programmed with AD_LOW_EN set (1) then the value in this
register is used to generate AD[1:0] instead of the normal value
(“00” for all except I/O cycles where the byte enables determine
the value).

7-5 DMA_RTYPE FRW 0H

DMA Read from PCI Bus Command Type: determines the PCI
command type applied to the C/BE#(3:1) outputs for a PCI read
cycle from the DMA controller. C/BE# bit 0 will be driven ‘0’ for all
write cycles and thus there is no corresponding register bit.
Writing DMA_RTYPE “000” will cause the value 011 to be written
instead. This results in a “memory read” command type.

4 - R 0H reserved

3-1 DMA_WTYPE FRW 0H

DMA Write to PCI Bus Command Type: determines the PCI
command type applied to the C/BE[3:1] outputs for a PCI write
cycle from the DMA controller. C/BE bit 0 will be driven ‘1’ for all
write cycles and thus there is no corresponding register bit.
Writing DMA_WTYPE “000” will cause the value 011 to be written
instead. This results in a “memory write” command type.

0 - R 0H reserved

DMA_PCI_ADDR0, 1

Bits Mnemonic Type
Reset
Value

Description

31-2 ADR RW 0H PCI Byte Address

1-0 R 0H These low address bits read back zero since all DMA transfers
are 32 bit aligned
158 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 159

Register Descriptions

Register Map
DMA_LOCAL_ADR: LOCAL DMA ADDRESS REGISTERS
Mnemonic: DMA_LOCAL_ADDR0, 1
Offset: 84H, 94H
Size: 32 bits

DMA_LENGTH0, 1: DMA TRANSFER LENGTH REGISTER 0, 1
Mnemonic: DMA_LENGTH0, 1
Offset: 88H, 98H
Size: 24 bits

DMA_LOCAL_ADDR0, 1

Bits Mnemonic Type
Reset
Value

Description

31-2 ADR RW 0H Local Byte Address

1-0 R 0H These low address bits read back zero since all DMA transfers
are 32 bit aligned

DMA_LENGTH0, 1

Bits Mnemonic Type
Reset
Value

Description

23 DREQ_EN RW 0H

External DMA Request Enable: When set (1) the DMA will be
throttled by to the state of the INTC# input pin (DMA Channel 0)
or INTD# input pin (DMA Channel 1). The corresponding pin must
be low (0) to allow the DMA to fetch the data source.

22 INTR_EN RW 0H

Interrupt on Link Complete: When set (1) an internal interrupt
from the DMA controller will generated whenever the data
transfer portion of a link is complete. The internal DMA interrupt
can be routed to PCI or local interrupt outputs by enabling them
in the PCI_INT_CFG and/or LB_IMASK regiters. An internal
interrupt is always generated upon chain completion when the
DMA_IPR bit is cleared by the hardware.

21-20 - R 0H reserved

19-0 COUNT RW 0H
Transfer Count Remaining. This register holds the initial transfer
count (in 32-bit words) and is updated with the remaing count
after each DMA transfer.
160 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
DMA_CSR: DMA CONTROL AND STATUS REGISTERS
Mnemonic: DMA_CSR0, 1
Offset: 8BH, 9BH
Size: 8 bits

DMA_CSR0, 1
Bits Mnemonic Type Reset

Value
Description

7 CHAIN RW 0H 1 = enable DMA chaining for this transfer
0 = disable DMA chaining for this transfer

6 CLR_LEN RW 0H Clear Length: when set (1), the DMA_LENGTH value in the
memory based descriptor will be cleared after the transfer is
complete.

5 PRIORITY RW 0H Controls the relative priority of DMA channels. See "DMA
Controller" chapter.

4 DIRECTION RW 0H DMA Direction:
0 = Local to PCI
1 = PCI to Local

3-2 SWAP RW 0H Byte Swap Control: Selects byte order conversion options:a

1 ABORT W 0H 1 = immediately abort current DMA transfer in processa

0 = no operation

a. Writing to DMA_CSRx with the ABORT bit set will cause all other bits in the register to maintain
their previous value (they are not written). The transfer can be restarted by setting DMA_IPR
again using a read-modify-write to maintain the contents of the other register bits.

0 DMA_IPR RW 0H DMA Initiate Process:
Write 1 = begin DMA operation
Write 0 = no operation
Read 1 = DMA in Progress
Read 0 = DMA Idle
Automatically cleared when the transfer count expires and there
are no further chains to process.

SWAP D[31:24] D[23:26] D[15:8] D[7:0]
no swap, 32
bit

00 Q[31:24] Q[23:16] Q[15:8] Q[7:0]

16 bit 01 Q[15:8] Q[7:0] Q[31:24] Q[23:16]
8 bit 10 Q[7:0] Q[15:8] Q[23:16] Q[31:24]
reserved 11
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 161

Register Descriptions

Register Map
DMA_CTLB_ADR: DMA CONTROL BLOCK ADDRESS REGISTER 0,1
Mnemonic: DMA_CTLB_ADDR0, 1
Offset: 8CH, 9CH
Size: 32 bits

DMA_DELAY: DMA DESCIPTOR DELAY
Mnemonic: DMA_DELAY
Offset: E0H
Size: 8 bits

MAIL_DATA0-15: MAILBOX DATA REGISTER 0-15
Mnemonic: MAIL_DATA

Offset: C0H - CFH (see register map)
Size: 8 bits

DMA_CTLB_ADDR0, 1

Bits Mnemonic Type
Reset
Value

Description

31-4 CTLB_ADR RW 0H
DMA control block address. Address of the first control block in a
DMA chain. Must be aligned to a 16 byte boundary and reside in
Local memory.

3-0 - R 0H reserved

DMA_DELAY

Bits Mnemonic Type
Reset
Value

Description

7-0 DELAY RW 0H Determines the delay between the completion of processing a
DMA descriptor and the loading of the next DMA descriptor.

MAIL_DATA0-15

Bits Mnemonic Type
Reset
Value

Description

7-0 DATA RW 0H Mailbox Data (mapped into local bus address space): Application
specific, software defined data register.
162 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
PCI BUS MAILBOX WRITE INTERRUPT CONTROL REGISTER
Mnemonic: PCI_MAIL_IEWR
Offset: D0H
Size: 16 bits

PCI BUS MAILBOX READ INTERRUPT CONTROL REGISTER
Mnemonic: PCI_MAIL_IERD
Offset: D2H
Size: 16 bits

PCI_MAIL_IEWR
Bits Mnemonic Type Reset Value Description

15 EN15 RW 0H 1 = enable local interrupts on PCI bus writes to mailbox 15
0 = disable local interrupts on PCI bus writes to mailbox 15

14 EN14 RW 0H Same as above for mailbox 14.

13 EN13 RW 0H Same as above for mailbox 13.

12 EN12 RW 0H Same as above for mailbox 12.

11 EN11 RW 0H Same as above for mailbox 11.

10 EN10 RW 0H Same as above for mailbox 10.

9 EN9 RW 0H Same as above for mailbox 9.

8 EN8 RW 0H Same as above for mailbox 8.

7 EN7 RW 0H Same as above for mailbox 7.

6 EN6 RW 0H Same as above for mailbox 6.

5 EN5 RW 0H Same as above for mailbox 5.

4 EN4 RW 0H Same as above for mailbox 4.

3 EN3 RW 0H Same as above for mailbox 3.

2 EN2 RW 0H Same as above for mailbox 2.

1 EN1 RW 0H Same as above for mailbox 1.

0 EN0 RW 0H Same as above for mailbox 0.

PCI_MAIL_IERD
Bits Mnemonic Type Reset Value Description

15 EN15 RW 0H 1 = enable local interrupts on PCI bus read from mailbox 15
0 = disable local interrupts on PCI bus read from mailbox 15

14 EN14 RW 0H Same as above for mailbox 14.

13 EN13 RW 0H Same as above for mailbox 13.

12 EN12 RW 0H Same as above for mailbox 12.

11 EN11 RW 0H Same as above for mailbox 11.

10 EN10 RW 0H Same as above for mailbox 10.

9 EN9 RW 0H Same as above for mailbox 9.

8 EN8 RW 0H Same as above for mailbox 8.

7 EN7 RW 0H Same as above for mailbox 7.

6 EN6 RW 0H Same as above for mailbox 6.

5 EN5 RW 0H Same as above for mailbox 5.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 163

Register Descriptions

Register Map
LOCAL BUS MAILBOX WRITE INTERRUPT CONTROL REGISTER
Mnemonic: LB_MAIL_IEWR
Offset: D4H
Size: 16 bits

PCI_MAIL_IERD (cont’d)
Bits Mnemonic Type Reset Value Description

4 EN4 RW 0H Same as above for mailbox 4.

3 EN3 RW 0H Same as above for mailbox 3.

2 EN2 RW 0H Same as above for mailbox 2.

1 EN1 RW 0H Same as above for mailbox 1.

0 EN0 RW 0H Same as above for mailbox 0.

LB_MAIL_IEWR

Bits Mnemonic Type
Reset
Value

Description

15 EN15 RW 0H 1 = enable PCI interrupts on local bus writes to mailbox 15
0 =disable PCI interrupts on local bus writes to mailbox 15

14 EN14 RW 0H Same as above for mailbox 14.

13 EN13 RW 0H Same as above for mailbox 13.

12 EN12 RW 0H Same as above for mailbox 12.

11 EN11 RW 0H Same as above for mailbox 11.

10 EN10 RW 0H Same as above for mailbox 10.

9 EN9 RW 0H Same as above for mailbox 9.

8 EN8 RW 0H Same as above for mailbox 8.

7 EN7 RW 0H Same as above for mailbox 7.

6 EN6 RW 0H Same as above for mailbox 6.

5 EN5 RW 0H Same as above for mailbox 5.

4 EN4 RW 0H Same as above for mailbox 4.

3 EN3 RW 0H Same as above for mailbox 3.

2 EN2 RW 0H Same as above for mailbox 2.

1 EN1 RW 0H Same as above for mailbox 1.

0 EN0 RW 0H Same as above for mailbox 0.
164 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
LOCAL BUS MAILBOX READ INTERRUPT CONTROL REGISTER
Mnemonic: LB_MAIL_IERD
Offset: D6H
Size: 16 bits

MAIL_WR_STAT: MAILBOX WRITE INTERRUPT STATUS
Mnemonic: MAIL_WR_STAT
Offset: D8H
Size: 16 bits

LB_MAIL_IERD
Bits Mnemonic Type Reset Value Description

15 EN15 RW 0H 1 = enable PCI interrupts on local bus reads from mailbox 15
0 = disable PCI interrupts on local bus reads from mailbox 15

14 EN14 RW 0H Same as above for mailbox 14.

13 EN13 RW 0H Same as above for mailbox 13.

12 EN12 RW 0H Same as above for mailbox 12.

11 EN11 RW 0H Same as above for mailbox 11.

10 EN10 RW 0H Same as above for mailbox 10.

9 EN9 RW 0H Same as above for mailbox 9.

8 EN8 RW 0H Same as above for mailbox 8.

7 EN7 RW 0H Same as above for mailbox 7.

6 EN6 RW 0H Same as above for mailbox 6.

5 EN5 RW 0H Same as above for mailbox 5.

4 EN4 RW 0H Same as above for mailbox 4.

3 EN3 RW 0H Same as above for mailbox 3.

2 EN2 RW 0H Same as above for mailbox 2.

1 EN1 RW 0H Same as above for mailbox 1.

0 EN0 RW 0H Same as above for mailbox 0.

MAIL_WR_STAT
Bits Mnemonic Type Reset Value Description

15 WR_STAT15 RW 0H
1 = Mailbox 15 has requested a PCI or local write interrupt
0 = Mailbox 15 has not requested a PCI or local write interrupt
Cleared by writing ‘1’. Writing ‘0’ has no effect

14 WR_STAT14 RW 0H same as above for mailbox 14

13 WR_STAT13 RW 0H same as above for mailbox 13

12 WR_STAT12 RW 0H same as above for mailbox 12

11 WR_STAT11 RW 0H same as above for mailbox 11

10 WR_STAT10 RW 0H same as above for mailbox 10

9 WR_STAT9 RW 0H same as above for mailbox 9

8 WR_STAT8 RW 0H same as above for mailbox 8

7 WR_STAT7 RW 0H same as above for mailbox 7

6 WR_STAT6 RW 0H same as above for mailbox 6
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 165

Register Descriptions

Register Map
MAIL_RD_STAT: MAILBOX READ INTERRUPT STATUS
Mnemonic: MAIL_RD_STAT
Offset: DAH
Size: 16 bits

MAIL_WR_STAT (cont’d)
Bits Mnemonic Type Reset Value Description

5 WR_STAT5 RW 0H same as above for mailbox 5

4 WR_STAT4 RW 0H same as above for mailbox 4

3 WR_STAT3 RW 0H same as above for mailbox 3

2 WR_STAT2 RW 0H same as above for mailbox 2

1 WR_STAT1 RW 0H same as above for mailbox 1

0 WR_STAT0 RW 0H same as above for mailbox 0

MAIL_RD_STAT
Bits Mnemonic Type Reset Value Description

15 RD_STAT15 RW 0H
1 = Mailbox 15 has requested a PCI or local read interrupt
0 = Mailbox 15 has not requested a PCI or local read interrupt
Cleared by writing ‘1’. Writing ‘0’ has no effect

14 RD_STAT14 RW 0H same as above for mailbox 14

13 RD_STAT13 RW 0H same as above for mailbox 13

12 RD_STAT12 RW 0H same as above for mailbox 12

11 RD_STAT11 RW 0H same as above for mailbox 11

10 RD_STAT10 RW 0H same as above for mailbox 10

9 RD_STAT9 RW 0H same as above for mailbox 9

8 RD_STAT8 RW 0H same as above for mailbox 8

7 RD_STAT7 RW 0H same as above for mailbox 7

6 RD_STAT6 RW 0H same as above for mailbox 6

5 RD_STAT5 RW 0H same as above for mailbox 5

4 RD_STAT4 RW 0H same as above for mailbox 4

3 RD_STAT3 RW 0H same as above for mailbox 3

2 RD_STAT2 RW 0H same as above for mailbox 2

1 RD_STAT1 RW 0H same as above for mailbox 1

0 RD_STAT0 RW 0H same as above for mailbox 0
166 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Register Descriptions
 Register Map
QBA_MAP : LOCATING THE QUEUE IN LOCAL MEMORY a

Mnemonic: QBA_MAP
Offset: DCH
Size: 32 bits

I2O MESSAGE UNIT POINTERS
Offset: A0H-BFH
Size: 32 bits each

QBA_MAP

Bits Mnemonic Type
Reset
Value

Description

31-20 BASE RW 0H
Queue Base Address: These bits are used to generate bits 31-20
of all Inbound/Outbound pointers.egister bits so that lower bits of
the decode are masked off.

19-10 - R 0H reserved

10-8 QSIZE RW 0H

Queue Size: The size of the aperture is determined as follows::

7-1 - R 0H reserved

0 ONLINE RW 0H

I2O Device On Line: when clear (0), the VxxxEPC will return
0xFFFFFFFF when the inbound and outbound ports are read.
This bit should only be enabled after the queues have been
initialized by the local processor and it is ready to accept an
inbound MFA. This bit must be clear in order for the local
processor to modify the contents of the OFL_HEAD, OPL_TAIL,
IPL_HEAD and IFL_TAIL registers.

Reg. Name Offset Description Pointer Maintenance

OFL_HEAD 0xBC Outbound Free List Head Pointer PCI write of Outbound Port auto-
increments

OFL_TAIL 0xB8 Outbound Free List Tail Pointer Updated by local processor

OPL_HEAD 0xB4 Outbound Post List Head Pointer Updated by local processor

OPL_TAIL 0xB0 Outbound Post List Tail Pointer PCI read of Outbound Port auto-
increments

IPL_HEAD 0xAC Inbound Post List Head Pointer PCI write of Inbound Port auto-
increments

IPL_TAIL 0xA8 Inbound Post List Tail Pointer Updated by local processor

IFL_HEAD 0xA4 Inbound Free List Head Pointer Updated by local processor

IFL_TAIL 0xA0 Inbound Free List Tail Pointer PCI read of Inbound Port auto-
increments

QSIZE Size Auto Increment
Mask

000 4K entries (16K Bytes) 0x3FFC
001 8K entries (32K Bytes) 0x7FFC
010 16K entries (64K Bytes) 0xFFFC
011 32K entries (128K Bytes) 0x1FFFC
100 64K entries (256K Bytes) 0x3FFFC

others reserved
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 167

Register Descriptions

Register Map
168 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Glossary
Glossary

This glossary contains terms used in EPC User’s Manual. For reference to more information
about a term, please refer to index and PCI 2.1 specification.

Burst - Bus protocol that allows a bus master to request more than one data transfer for an
access. Typically, the data is sequential, sequential over a modulo boundary or cache line
toggle (such as the 486).

Deadlock - The condition in which one processor (or master device) attempts to access a
resource that is tightly coupled to a second processor (or master device) that is also in a
state of attempting to access a resource local to the first processor.

DMA - Direct Memory Access. A DMA controller allows the CPU to continue operation while
the EPC controls block transfer between Local and PCI address space.

Dynamic Bandwidth Allocation ™ - A technique that allows a single FIFO to be
dynamically shared for multiple purposes and also negates the need to require a bus retry
each time a non-sequential address is begun.

Endian - The organization of sub-word data within the physical data bus. Little Endian
processors address the first byte of a 32-bit word on the least significant data lines. Big
Endian processors address the first byte of a 32-bit word on the most significant data lines.
The PCI bus is strictly little endian and the internal registers of the EPC reflect this fact.

Wait State - A processor clock cycle in which no data transfer occurs although data transfer
has been requested. Used to hold off a requesting master until data from memory or I/O is
ready.

Word - The native bus size of the system. For this document, it is 32 bits which is the size of
the PCI bus.
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 169

Glossary
170 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Index
Index

Symbols
’FR’ 111, 115
’FRW’ 111, 115
’R’ 111, 115
’RW’ 115
’W’ 115

A
Address Translation 21
ADS 74, 77
Am29K 1, 4
Aperture 1, 8, 17, 25
Aperture Base Address 18

B
Back-to-Back 84
BIOS 23
BLAST 74
BOFF 78
Boundary 40, 45, 46
BREQ 45
BTERM 74, 77, 135
BURST 74
Byte Order 25, 42

C
C/BE 23, 24, 47, 120
Chaining 38, 43
Chaining Descriptor 38
Configuration 83
Configuration Read 24, 45, 48
Configuration Write 24, 46, 49
Crosspoint Interrupt 97, 100

D
Data Byte Order 21
Deadlock 47
DEVSEL 47, 58
Disconnect 59
DMA 11, 27, 28
DMA Interrupt 40
DMA Programming 41
DMA Throttling 40
Doorbell 97
Doorbell Interrupt 11, 94
DOS Support 13, 18, 89
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 171

Index
Draining Strategy 29
Dual Address Cycle 24
Dynamic Bandwidth Allocation 1, 27

E
EEPROM 1, 47, 105, 107, 108, 109, 111
EEPROM Programming 111
Endian Conversion 21
EPROM 13, 14
ERR 135
Expansion ROM 23

F
FIFO 27
FIFO Architecture 30
FIFO Draining 29
FIFO Programming 31

G
GNT 29, 59

H
HOLD 45, 74, 77
HOLDA 74, 77

I
I/O Read 24, 45, 48
I/O Space 89
I/O Write 24, 46, 49
I2C 111
i960 1, 4
i960 Processor Configuration Note 110
IDSEL 47, 83, 85, 110
Initialization 105
INTA 100, 102, 103
INTB 102, 103
INTC 102, 103
INTD 100, 102, 103
Internal Register 13
Internal Registers 14
Interrupt 97
Interrupt Acknowledge 24, 45, 48
Interrupt Crosspoint 101
INTx 100, 122
IO Cycle 13
IRDY 48

L
Latency Timer 59
LBGRT 74
172 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Index
LBREQ 74
LICU 95, 97, 99
LINT 74, 103
Little-Endian 38
Local-from-PCI Read 9
Local-to-PCI Write 9
LPARx 80
LREQ 75
LRESET 105, 111

M
Mailbox Register 1, 11, 93
Mailbox Registers Programming 95
Masking 98
Master 1, 7
Memory Read 24, 45, 48
Memory Read Line 24, 45, 48
Memory Read Multiple 24, 45, 48
Memory Write 24, 46, 49
Memory Write and Invalidate 24, 46, 49

O
Overlapping 22

P
PC/DOS 89
PCI 2.1 1, 24, 45
PCI Command 24
PCI Configuration Cycle 13, 83, 109
PCI Configuration Space 110
PCI Disconnect 45, 46, 47, 58
PCI EPROM 13
PCI I/O Space 21, 113
PCI Interrupt Acknowledge Cycle 103
PCI Master Abort 58, 85
PCI Memory Space 21, 113
PCI Operation 7
PCI Retry 47, 58
PCI Special Interest Group 4, 45
PCI Target Abort 58
PCI Target Disconnect 59
PCI Target Retry 59
PCI Type 0 Configuration Cycle 85
PCI-from-Local Read 10
PCI-to-Local Write 10
PCI-to-PCI Bridge 85
PICU 95, 99
Posted Read 47
PowerPC 11
Prefetch 25, 28, 103
PRST 105, 111
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 173

Index
R
RDY 73, 74, 135
Read Aperture 28
Read FIFO 31
Read Memory 38
Read Prefetching 17, 22, 25
READY 61, 77, 135
Recovery 58
Register

DEVICE ID 112

DMA_CSR0 136

DMA_CSR1 136

DMA_CSRx 39, 40, 42, 43

DMA_CTLB_ADDR0 137

DMA_CTLB_ADDR1 137

DMA_CTLB_ADDRx 38, 39, 43

DMA_LENGTH0 136

DMA_LENGTH1 136

DMA_LENGTHx 42

DMA_LOCAL_ADDR0 135

DMA_LOCAL_ADDR1 135

DMA_LOCAL_ADDRx 41

DMA_PCI_ADDR0 135

DMA_PCI_ADDR1 135

EPROM_BASE 86

FIFO_CFG 29, 46, 47, 129

FIFO_PRIORITY 130

FIFO_STAT 131

LB_BASE0 127

LB_BASE1 127

LB_BASEx 23, 25, 103

LB_CFG 135

LB_IMASK 97, 98, 133

LB_IO_BASE 14, 93, 108, 109, 128

LB_ISTAT 95, 97, 98, 132

LB_MAIL_IERD 95, 139, 140

LB_MAIL_IEWR 95, 139

LB_MAP0 128

LB_MAP1 128
174 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

Index
LB_MAPx 23, 24, 103

LB_STAT 102

LB_WR_PCI 49

MAIL_DATA 137

MAIL_RD_STAT 94, 95, 141

MAIL_WR_STAT 94, 95, 140

PC_IO_BASEx 45

PCI_BASE0 120

PCI_BASE1 121

PCI_BASEx 17, 18, 21, 22, 86, 89, 91

PCI_BPARAM 100, 102, 122

PCI_CC_REV 108, 119

PCI_CMD 22, 113, 117, 118

PCI_DEVICE 117

PCI_HDR_CFG 119

PCI_INT_CFG 100, 126, 127

PCI_INT_STAT 95, 100, 102, 125

PCI_IO_BASE 14, 47, 93, 113, 120

PCI_MAIL_IERD 95, 138

PCI_MAIL_IEWR 95, 137, 138

PCI_MAP0 123

PCI_MAP1 124

PCI_MAPx 17, 18, 21, 47, 89, 91

PCI_ROM 122

PCI_STAT 58, 59, 118

PCI_STATUS 85

PCI_SUB_ID 122

PCI_SUB_VENDOR 121

PCI_VENDOR 85, 112, 117

SYSTEM 107, 111, 134
Register Descriptions 115
Register Map 115
REQ 29, 49, 118
Reset 105
ROM 23

S
SCL 111
SDA 111
SERR 117, 118
Copyright © 1997-1998, V3 Semiconductor Inc. EPC User’s Manual Revision 1.05 175

Index
Special Cycle 24, 46, 49
Swap Mode 22

T
Target 1
Throttling 40
TRDY 10, 45, 46, 47, 49

V
V96SSC 1, 7
VGA 91
VxBMC/CMC 1, 7

W
Wait State 45, 48
Write FIFO 17, 27, 28
Write Memory 38
Write Posting 27

X
x86 93
176 EPC User’s Manual Revision 1.05 Copyright © 1997-1998, V3 Semiconductor Inc.

	Chapter 1 Introduction
	1.1 How to Use this Manual
	1.2 Getting Help from V3 Semiconductor
	1.3 Getting Answers to PCI Related Questions
	1.4 Getting Information About the i960/Am29K Family
	1.5 Disclaimer
	1.6 Revision History
	Chapter 2 Bridge Operation Overview
	2.1 Operational Example
	2.1.1 Direct Local Bus Write to PCI Space
	2.1.2 Direct Local Bus Read from PCI Space
	2.1.3 PCI Write to Local Space
	2.1.4 PCI Reads from Local Space
	2.1.5 DMA Transfers
	2.1.6 Mailbox Registers and Doorbell Interrupts

	Chapter 3 Internal Register Apertures
	3.1 Local Bus Access to Internal Registers
	3.2 PCI Bus Access to Internal Registers
	Chapter 4 Data Transfer Apertures
	4.1 PCI-to-Local Bus Apertures
	4.1.1 Setting the PCI-to-Local Aperture Base Address and Size
	4.1.2 Selecting PCI Memory or I/O Space Mapping
	4.1.3 PCI-to-Local Address Translation
	4.1.4 Byte Order Conversion
	4.1.5 Enabling Read Prefetching
	4.1.6 Disabling PCI-to-Local Bus Apertures
	4.1.7 Overlapping Apertures
	4.1.8 Special Function Modes for PCI-to-Local Bus Apertures

	4.2 Local-to-PCI Bus Apertures
	4.2.1 Setting the PCI Command Type
	4.2.2 Setting the Local-to-PCI Aperture Base Address and Size
	4.2.3 Local-to-PCI Address Translation
	4.2.4 Byte Order Conversion
	4.2.5 Enabling Read Prefetching
	4.2.6 Enabling Local-to-PCI Bus Apertures

	Chapter 5 FIFO Architecture and Operation
	5.1 Dynamic Bandwidth Allocation FIFO Architecture
	5.2 Write FIFO Operation and Programming
	5.2.1 Write FIFO Draining Strategies

	5.3 Read FIFO Operation and Programming
	5.3.1 Prefetching and Read FIFO Filling Strategies

	5.4 FIFO Prioritization Options
	5.5 FIFO Data Coherency Options
	5.5.1 Ensuring Strict Data Coherency
	5.5.2 Monitoring the Status of Read and Write FIFOs
	5.5.3 Ensuring the Completion of a Posted Write

	5.6 FIFO Latency
	Chapter 6 DMA Controller
	6.1 DMA Transfers
	6.1.1 Local Bus to PCI Bus DMA Transfers
	6.1.2 PCI Bus to Local Bus DMA Transfers
	6.1.3 DMA Block Chaining
	6.1.4 Multi-processor DMA Chaining
	6.1.5 Chain Descriptor Loading
	6.1.6 DMA Transfer Size
	6.1.7 Relationship to the Data Transfer Apertures
	6.1.8 Automatic DMA Throttling
	6.1.9 Demand Mode DMA
	6.1.10 DMA Interrupts

	6.2 Programming the DMA Controller
	6.2.1 Setting the Starting Addresses
	6.2.2 Setting the Transfer Count
	6.2.3 Setting the Transfer Direction
	6.2.4 Byte Order Conversion
	6.2.5 Using DMA Block Chaining
	6.2.6 Starting DMA Operation
	6.2.7 Early Termination of a DMA Process
	6.2.8 Setting Priority Between the DMA Channels

	Chapter 7 PCI Bus Interface
	7.1 Target Transfers
	7.1.1 Target Reads
	7.1.2 Target Writes
	7.1.3 PCI Exceptions During EPC Target Cycles
	7.1.4 PCI Access of EPC Internal Registers

	7.2 Initiator Transfers
	7.2.1 Initiator Reads
	7.2.2 Initiator Writes
	7.2.3 PCI Exceptions During EPC Initiated Cycles
	7.2.4 Initiator Pre-Emption

	Chapter 8 Local Bus Interface
	8.1 Target Mode
	8.1.1 Local Bus CPU Configuration
	8.1.2 Local Reads and Writes to Internal Registers
	8.1.3 Local Read from Local-to-PCI Apertures
	8.1.4 Local Write to Local-to-PCI Apertures
	8.1.5 Target Mode PCI Error Signalling
	8.1.6 Deadlock Conditions and Resolution

	8.2 Master Mode
	8.2.1 Requesting the Local Bus
	8.2.2 Local Bus Size
	8.2.3 Data Swapping
	8.2.4 i960 Local Bus Reads and Writes
	8.2.5 Am29K Local Bus Reads and Writes

	8.3 Burst Support
	8.4 BTERM Operation (961 and 962 mode Only)
	8.4.1 BTERM as an Input
	8.4.2 Deadlock Avoidance using the BTERM as an Output

	8.5 Local Bus Parity
	8.5.1 Relationship between Local Parity and PCI Parity
	8.5.2 Local Bus Parity Generation
	8.5.3 Local Bus Parity Checking

	Chapter 9 PCI Configuration
	9.1 Configuration as a System Host Bridge
	9.1.1 EPC Host Configuration Mechanism
	9.1.2 Controlling Target IDSEL Lines
	9.1.3 Generating Configuration Reads and Writes
	9.1.4 Using Configuration Information
	9.1.5 Determining the Presence of Target Devices During Configuration

	9.2 Configuration as a Target Bridge
	9.2.1 EPC Base Register Response to Configuration Inquiries
	9.2.2 EPC Expansion ROM Base Register Response to Configuration Inquiries

	Chapter 10 PC Compatibility
	10.1 Real Mode DOS Compatibility Aperture
	10.2 Example: VGA Peripheral
	Chapter 11 Mailbox Registers
	11.1 Overview
	11.1.1 Accessing the Mailbox Registers
	11.1.2 Doorbell Interrupts

	11.2 Programming the Mailbox Registers
	11.2.1 Enabling Doorbell Interrupt Requests
	11.2.2 Clearing Doorbell Interrupt Requests

	Chapter 12 I2O Interface
	12.1 Overview
	12.2 I2O Compatible Address Translation Unit
	12.2.1 ATU Setup and Configuration
	12.2.2 PCI_I2O_MAP Operation

	12.3 Inbound/Outbound Queue Management
	12.3.1 Queue Pointers
	12.3.2 QBA_MAP Register: Locating the Queue in Local Memory
	12.3.3 PCI Inbound/Outbound Port Read/Write Cycles

	12.4 PCI I2O Interrupt Registers
	12.4.1 I2O Ready Interrupt

	12.5 Enabling I2O Operation
	Chapter 13 Interrupt Control
	13.1 Local Interrupt Control Unit
	13.1.1 Overview
	13.1.2 Local Interrupt Requests
	13.1.3 Masking Local Interrupt Requests
	13.1.4 Local Interrupt Event Signal

	13.2 PCI Interrupt Control Unit (PICU)
	13.2.1 Overview
	13.2.2 PCI Interrupt Pins (INTA through INTD)
	13.2.3 Internal PCI Interrupt Requests
	13.2.4 PICU Configuration Example

	13.3 Generating PCI Interrupt Acknowledge Cycles
	Chapter 14 Initialization
	14.1 Reset Direction
	14.2 Initializing the Internal Registers
	14.2.1 Selecting Initialization Mode
	14.2.2 Initialization Using the Local Processor
	14.2.3 Initialization Using the PCI Configuration Space
	14.2.4 Initialization Using the Serial EEPROM interface
	14.2.5 Re-Initialization Using the PCI I/O or Memory Space

	Chapter 15 Register Descriptions
	15.1 Register Map
	PCI_VENDOR: Vendor ID (PCI Required)
	PCI_STAT: PCI Status Register
	PCI_HDR_CFG: PCI Header/Config. Register (pci required)
	PCI_I2O_BASE : PCI I2O Base Address Register
	PCI_BASE0: PCI to Local Bus Aperture 0 Base Address
	PCI_SUB_VENDOR: PCI SUBSYSTEM Vendor
	PCI_MAP0: PCI Bus to Local Bus Address Map 0
	PCI_MAP1: PCI Bus to Local Bus Address Map 1
	PCI_I2O_MAP: PCI Bus I2O ATU Local Bus Address Map
	PCI_INT_STAT: PCI Interrupt Status Register
	PCI_INT_CFG: PCI Interrupt Configuration Register
	LB_BASE 0,1 : Local Bus to PCI Bus Aperture 0,1 Address
	LB_MAP0, 1: Local Bus to PCI Bus Address Map 0, 1
	LB_BASE2: Local Bus to PCI Bus I/O Aperture Addressa
	FIFO_CFG: FIFO Configuration Register
	FIFO_PRIORITY: FIFO Priority Control Register
	FIFO_STAT: FIFO Status Register
	LB_ISTAT: Local Bus Interrupt Control and Status Register
	SYSTEM REGISTER
	LB_CFG REGISTER: Local Bus Configuration Registera
	DMA_CSR: DMA Control and Status Registers
	PCI BUS Mailbox WRITE Interrupt Control Register
	lOCAL BUS Mailbox WRITE Interrupt Control Register
	MAIL_WR_STAT: Mailbox Write Interrupt Status
	QBA_MAP : Locating the Queue in Local memorya

	Glossary
	Index

